
 Deliverable D2.2

ENGINES Page 1

DELIVERABLE D2.2

REPORT ON DVB-NGH RECEIVER ISSUES

28
TH

 NOVEMBER 2012

Editor: Tero Jokela

University of Turku, Finland

 Deliverable D2.2

ENGINES Page 2

EXECUTIVE SUMMARY

In ENGINES work package two (WP2), individual system architecture components were studied, and the

results from these studies have been forwarded to standardization work (DVB-T2 Lite, DVB-NGH). The

outcome of WP2 work is collected in five deliverables. Deliverable 2.1 focuses on system architectural work

performed by ENGINES partners. Deliverable 2.2 deals with DVB-NGH receiver implementation related

issues. Devised advanced component techniques for DVB-NGH are presented in deliverable 2.3.

Additionally there is work on overall architectures, including issues not covered by direct standardization

that are novel access technologies (deliverable 2.4) and end-to-end system integration (deliverable 2.5).

This deliverable focuses on algorithms applied at the receiver. Further, receiver complexity regarding

selected algorithms is estimated and algorithms for reducing receiver complexity are presented. The

performance of the algorithms is presented via simulations. The topics considered are:

 Generic channel equalization techniques for OFDM based systems in time-variant channels

A generic channel equalization technique for OFDM based systems in time variant channels is

presented. It is proven that the most known equalization algorithms for OFDM signals in time

variant channels with mobile reception scenarios are part of this generic theoretical model.

 A Shuffled Iterative Receiver for the DVB-T2 Bit-Interleaved Coded Modulation: Architecture

Design, Implementation and FPGA Prototyping

An efficient shuffled iterative receiver for the second generation of the terrestrial digital video

broadcasting standard DVB-T2 is introduced. A simplified detection algorithm is presented, which

has the merit of being suitable for hardware implementation of a Space-Time Code (STC).

 Expected DVB-T2 Performance Over Time Varying Environments

Performance of DVB-T2 in time varying environments is presented. To model this environment,

TU6 channel is considered. The performance of the standard is simulated for both single and

diversity 2 reception.

 Fast GPU and CPU implementations of an LDPC decoder

Two implementations of LDPC (Low Density Parity Check) decoders optimized for decoding the

long codewords specified by the second generation of digital television broadcasting standards: i.e.

DVB-T2, DVB-S2, and DVB-C2 are presented. These implementations are highly parallel and

especially optimized for modern GPUs (graphics processing units) and general purpose CPUs

(central processing units). High-end GPUs and CPUs are quite affordable compared to capable

FPGAs, and this hardware can be found in the majority of recent personal home computers.

 MIMO detection

Considered issues are the complexity needed to perform maximum likelihood (ML) decoding for

MIMO systems and iterative MIMO receiver processing. The DVB-NGH standard is the first to

include a full rate MIMO scheme. Even though the number of antennas is relatively small, the

complexity to implement an ML decoder can be prohibitive. Ways to reduce complexity of the

DVB-NGH MIMO reception are studied.

The receiver issues related to hybrid access technologies and cognitive radio are presented in deliverable 2.4.

 Deliverable D2.2

ENGINES Page 3

TABLE OF CONTENTS

1 Introduction ... 5

2 On Approaching to Generic Channel Equalization Techniques for OFDM Based Systems in Time-

Variant Channels ... 6

2.1 Introduction ... 6

2.2 System Model .. 6

2.3 General Channel Equalization Methodology... 8

2.4 Channel Classification ... 9

2.5 Results ... 10

2.6 Conclusions ... 14

3 A Shuffled Iterative Receiver for the DVB-T2 Bit-Interleaved Coded Modulation: Architecture Design,

Implementation and FPGA Prototyping .. 14

3.1 Simplified Decoding of High Diversity Multi-Block Space-Time (MB-STBC) Codes 14

3.2 A shuffled iterative receiver architecture for Bit-Interleaved Coded Modulation systems 18

4 Expected DVB-T2 Performance Over Time Varying Environments .. 27

4.1 Mobile Channel Model .. 27

4.2 DVB-T2 Simulation Results .. 32

4.3 Mobile Performance of Worldwide DTT standards .. 34

4.4 Conclusion ... 35

5 Fast GPU and CPU implementations of an LDPC decoder .. 36

5.1 LDPC Codes .. 36

5.2 Hardware Architectures ... 37

5.3 Decoder Implementation ... 39

5.4 Performance ... 45

5.5 Conclusion ... 50

6 MIMO detection .. 50

6.1 Receiver structure .. 50

6.2 Complexity Analysis on Maximum-Likelihood MIMO Decoding ... 51

6.3 Iterative Space-Time decoding .. 54

6.4 Iterative MIMO decoding for DVB-NGH ... 54

7 Summary .. 64

8 References ... 65

 Deliverable D2.2

ENGINES Page 4

 LIST OF CONTRIBUTORS

 BBC

 INSA-IETR

 Parrot/Dibcom

 Telecom Bretagne

 Universidad Politécnica de Valencia/ iTEAM

 University of the Basque Country

 Åbo Akademi University

 Deliverable D2.2

ENGINES Page 5

1 INTRODUCTION
This deliverable is dedicated to issues related to DVB-NGH receiver algorithms and implementation issues.

As DVB-NGH is destined for mobile users, complexity of the receiver plays an important role in the design.

The rest of the deliverable is structured as follows.

In Chapter 2, a generic channel equalization technique for OFDM based systems in time variant channels is

presented. It is proven that the most known equalization algorithms for OFDM signals in time variant

channels with mobile reception scenarios are part of this generic theoretical model. This model is developed

mathematically, and based on it, a general classification for channels in terms of their time variability is

presented. Besides, the equalization methodology reliability and the channel classification validity have been

proved in both the TU-6 and MR channels. This generic methodology could be considered for the

equalization stages in the DVB-T2/NGH receivers working in mobile scenarios.

Chapter 3 introduces an efficient shuffled iterative receiver for the second generation of the terrestrial digital

video broadcasting standard DVB-T2. A simplified detection algorithm is presented, which has the merit of

being suitable for hardware implementation of a Space-Time Code (STC). Architecture complexity and

measured performance validate the high potential of iterative receiver as both a practical and competitive

solution for the DVB-T2 standard.

Chapter 4 focuses on the performance of DVB-T2 in time varying environments. In order to model the

channel impulse response, a TU6 channel is considered. The latter constitutes the most common channel

model of DTT standards for mobile environments. The performance of the standard is simulated for both

single and diversity 2 reception. Since DVB-T2 contains a huge number of possible configurations, focus is

mainly given to two configurations: UK mode, and Germany-like candidate mode.

Chapter 5 presents two implementations of LDPC decoders optimized for decoding the long codewords

specified by the second generation of digital television broadcasting standards: i.e. DVB-T2, DVB-S2, and

DVB-C2. These implementations are highly parallel and especially optimized for modern GPUs (graphics

processing units) and general purpose CPUs (central processing units). High-end GPUs and CPUs are quite

affordable compared to capable FPGAs, and this hardware can be found in the majority of recent personal

home computers.

Finally, Chapter 6 studies MIMO detection in the receiver. Considered issues are the complexity needed to

perform maximum likelihood (ML) decoding for MIMO systems and iterative MIMO receiver processing.

The DVB-NGH standard is the first to include a full rate MIMO scheme. Even though the number of

antennas is relatively small, the complexity to implement an ML decoder can be prohibitive. This chapter

proposes and studies ways to reduce complexity of the DVB-NGH MIMO reception.

 Deliverable D2.2

ENGINES Page 6

2 ON APPROACHING TO GENERIC CHANNEL EQUALIZATION

TECHNIQUES FOR OFDM BASED SYSTEMS IN TIME-VARIANT

CHANNELS

2.1 Introduction

Orthogonal frequency division multiplexing (OFDM) is widely considered as an attractive technique for

high-speed data transmission in mobile communications and broadcast systems due to its high spectral

efficiency and robustness against multipath interference [1]. It is known as an effective technique for digital

video broadcasting (DVB) since it can prevent inter-symbol interference (ISI) by inserting a guard interval

and can mitigate frequency selectivity by estimating the channel using the previously inserted pilot

tones[1][2].

Nevertheless, OFDM is relatively sensitive to time-domain selectivity, which is caused by temporal

variations of a mobile channel. In the case of mobile reception scenarios dynamic channel estimation is

needed. When the channels do not change within one symbol, the conventional methods consisting in

estimating channel at pilot frequencies, and afterwards, interpolating the frequency channel response for each

symbol could be implemented [2][3]. The estimation of pilot carrier can be based on Least Square (LS) or

Linear Minimum mean-Square-Error (LMMSE). In [3], it is proved that despite its computational complexity

LMMSE shows a better performance. And in [2], low pass interpolation has been proved to have the best

performance within all the interpolation techniques.

Their performance is worse for time-varying channels, which are not constant within the symbol. In such

cases, the time-variations lead to inter-sub-carrier-interference (ICI), which breaks down the orthogonality

between carriers so that the performance may be considerably degraded. There are several equalization

methods depending on the variability. First, for slow variation assumptions, Jeon and Chang used a

linearbased model for the channel response [4], whereas Wang and Liu used a polynomial basis adaptative

model [5]. One of the best performances is shown by Mostofi’s ICI mitigation model [6]. Second, for fast

time-varying systems, Hijazi and Ros implemented a Kalman Filter with very attractive results [7].

This work presents an approach to generic channel equalization techniques for OFDM based systems in time

variant channels and is organized as follows. Section II describes the mathematical behavior of the channel

and Section III introduces a general equalization method based on it. Next, Section IV proposes a general

classification for channels in terms of their time variability. Furthermore, in Section V several simulations

are carried out to prove that the general equalization methodology works fine and that the channel

classification is right. Three general equalization methods are defined based on the theoretical model and are

applied to previously defined channel models.

2.2 System Model

The discrete baseband equivalent system model under consideration is described in Figure 1. In the receiver,

perfect synchronization time is assumed. First, the transmitter applies an N-point IFFT to a QAM-symbols

[s]k data block, where k represents the subchannel where the symbols have been modulated.

 Deliverable D2.2

ENGINES Page 7

For a theoretical mathematical development the worst case is assumed: the channel varies within one

symbol. Hence, the output can be described as follows:

Figure 1: Equivalent baseband system model for OFDM.

The [w]n represents the additive white Gaussian noise (AWGN). At the receiver, an N-point FFT is applied

to demodulate the OFDM signal. The m
th
 subcarrier output can be represented by:

After some operations, the expression in (3) can be simplified as a function of [H]m;k, which is the double

Fourier transform of the channel impulse response [8], by terms of a convolution:

Subsequently, let [Z]m;k denote the matrix defining the circular-shifted convolution matrix of the expression

in (4):

Providing this expression is analysed in depth, the channel matrix [Z]m;k might be expressed as a sum of two

terms. On the one hand, [Z]
ici

, the [Z] matrix diagonal, which is related to the channel attenuation due to the

multipath fading. And, on the other hand, [Z]
d

 which is set as the [Z] matrix sub-diagonals, and it is

connected to the ICI due to the Doppler effect.

 Deliverable D2.2

ENGINES Page 8

It can be shown that each value of [Z]
d
 in (7) corresponds to the mean of the tap variability for the

corresponding channel impulse response path [6].

where,

Therefore, [Z]
d
 can be expressed as the Fourier Transform of the channel tap average:

2.3 General Channel Equalization Methodology

In this section, it is proposed general theoretical methodology for equalization based on the aforementioned

mathematical model for both variant and invariant channels (see Figure 3). As it has been proved in (5) when

we are dealing with LTV channels the received symbol is affected by a two dimensional channel impulse

response instead of the characteristic one dimensional for LTI scenarios. That is to say, in the receiver, a two

dimensional equalization method is needed.

Therefore, the CIR (Channel Impulse Response) cannot be directly estimated from the received symbol as

the received signal must be pre-processed. Due to this the received symbol ICI term (12), [Z]
ici

, should be

completely removed. Then, the symbol impulse response, [h]
sym

, must be estimated minimizing as much as

possible the influence of the AWGN. It should be noted that in time-variant scenarios this estimation and the

channel response are different since the transmitted signal is affected by a two dimensional CIR. Anyway,

[h]
sym

 can be calculated as a conventional CIR using the pilot-tones (called comb-type pilot) inserted into

each OFDM symbol at the transmitter side. The conventional channel estimation methods consist in

estimating the channel at pilot frequencies and next interpolating the channel frequency response. The

different methods and their results have already been studied in depth [2][3][9].

Subsequently, we get a N samples length symbol impulse response which has the information of the N
2

samples that complete the actual [H] matrix. Hence, at this point those N
2
 samples should be estimated from

[h]
sym

. As previously mentioned (10), this function is connected to the bidimensional channel impulse

response mean by the inverse Fourier Transform. Providing that these mean values match up with the (N/2)
th

value of the channel impulse response matrix, the estimated impulse response of Q symbols can be grouped,

and then interpolated in order to get the signal variation within each symbol (See Figure 2). The interpolation

method should be chosen according to the type of time-variability. For example, a linear interpolation should

work when the time variability of each path within a symbol is nearly linear.

 Deliverable D2.2

ENGINES Page 9

Figure 2: General equalization interpolation dimensions.

Figure 3: Equivalent General equalization block diagram.

In this way, the two dimensional channel impulse response for each symbol is obtained. Then, before the last

bidimensional equalization is performed, each symbol [Z] matrix should be calculated using the double

Fourier Transform and a circular shift (5). Eventually, the transmitted symbol is obtained equalizing each

symbol using this matrix.

2.4 Channel Classification

In the general equalization method explained in the previous sections it has been proved that the channel

time variability affects the result accuracy depending on two terms. First, the importance of the noisy term

ICI added to the symbol impulse response, and then, the assumption that the received response matches up

with the mean of the whole [H]. The analysis of these two terms will permit classifying channels into LTI

and LTV. Likewise, LTV systems should be considered either slow-varying or rapid-varying. As mentioned

before, the channel time variability is related to the relative Doppler frequency change, which indicates the

degree of time variation of the CIR within a symbol. This change can be calculated by the ratio of the symbol

period Tu to the inverse of the Doppler frequency [6].

 Deliverable D2.2

ENGINES Page 10

First, the inter-carrier interference term, mseici, is calculated. Its value indicates the weight of the ICI term in

the symbol impulse response. Hence, when it is very low it can be assumed that the distortion due to mobility

is negligible and the channel should be considered slow-variant.

Before the second error term is calculated, it is assumed that in a previous step the noisy influence due to the

AWGN noise and the ICI component has been removed. Afterwards, we calculate, mselin, which gives the

difference between the estimated symbol response (channel response mean value) and the theoretical matrix

(N/2)
th
 channel response.

Therefore, when the mselin is low the [h]
ave

 matches up with the (N/2)
th
 value of the bidimensional impulse

response matrix. Then, these channels are considered just as LTV channels with linear time variability and

the 5
th

step interpolation could be done by a linear one. However, when this term is too high the equalization

is going to deal with rapid-variant channels. In this type of channel the problem is that another interpolation

method is needed and a priori the channel variation within a symbol is unknown.

2.5 Results

To demonstrate the reliability of the proposed general equalization method approach for both LTI and LTV

multipath channels, the following simulations were performed. Firstly, a 4QAM-OFDM system with N =

1024 subcarriers is considered, where roughly Lu = 896 of the subcarriers are used for transmitting data

symbols. The system also occupies a bandwidth of 10MHz operating in the 890MHz frequency band. The

sample period is Tsample = 0.1us. Besides, the OFDM symbol has a guard interval with OFDM _G = 1/4

sample periods and there are Np = N/8 (i.e., Lf=8) equally spaced pilot carriers. In the following simulations,

the system will be restricted to a moving terminal with many uniformly distributed scatterers in the close

vicinity of the terminal, leading to the typical classical Doppler spectrum [10]. The analyzed channel models

are the TU-6 and MR models as recommended by COST 207 [11] and the WING-TV project [12], with

parameters shown in the Table 1 and Table 2. Two types of simulations have been carried out. On the one

hand, the equalization method weaknesses are analyzed in terms of their steps’ mse, and on the other hand,

the BER performance of the general method in terms of fdTu.

Table 1: TU-6 channel definition

 Deliverable D2.2

ENGINES Page 11

Table 2: MR channel definition

2.5.1 MSE Results

Figure 4 and Figure 5 show the mse
ici

 and mse
lin

 in terms of fdTu for TU-6 and MR channels, respectively. It

is observed that for both channels the mse evolution is almost the same and that the ICI term can be

considered negligible for low fdTu values. That is to say, the channels should be considered slowvariant and

this is why the one dimensional equalization works for this type of channels. It is noticed that when the

channel variability increases mselin can be as important as mseici. Therefore, as this term represents the

linearity of the variation within a symbol, the intersection of the two curves points the place where the

channel variation within a symbol is not linear any more, and hence, the channel should be considered

rapidvariant.

Figure 4: TU-6 Channel mse analysis.

 Deliverable D2.2

ENGINES Page 12

Figure 5: MR Channel mse analysis.

2.5.2 BER Results

Figure 6 and Figure 7 show the performance of the equalization method proposal in terms of fdTu for TU-6

and MR channels, respectively. Indeed, three cases of the general equalization method are considered based

on the theoretical [Z] matrix described in (6). The first one, 1D method, assumes that the time variability is

not so important and [Z] is assumed to be a diagonal matrix representing the distortion due to multipath. In

the second one, lin method, it is assumed a lineal variation within a symbol, and therefore, it is enough to

know two values of each channel tap, whereas the other ones are interpolated to obtain the whole matrix.

Nevertheless, in the third, 2D method, all the [Z] matrix values are used.

Figure 6: General method equalization algorithm for fdTu in TU-6 channels.

 Deliverable D2.2

ENGINES Page 13

Figure 7: General method equalization algorithm for fdTu in MR channels.

As it was expected when the channel are slow-variant, up to fdTu = 0.02, the three cases show practically the

same results, and therefore, in terms of simplicity the one dimension equalization is enough. But, when the

time variability within a symbol starts to be important, fdTu > 0.02 the one dimension equalization

performance is very poor. Hence, is clearly shown that from fdTu = 0.02 until fdTu = 0.1, the lin and 2D

equalizations should be used. Eventually, when the channel variability within a symbol arises to a non-linear

form (fdTu > 0.1) the 2D method is the only one which remains constant, while the linear method results

worsen. What is more, these channel classifications are reinforced with the Section V mse results. These

statements are valid for both MR and TU6 channel, and the linearity variation within variant channels

boundary, coincides with the limit defined for other equalization methods [6][13].

Figure 8 and Figure 9 give the BER performance of the general equalization, 2D method, compared to

conventional one, 1D method, for both the TU-6 and MR channels. They are tested for fdTu = 0.01 and for

fdTu = 0.1 when the [Z] has been perfectly recovered. It is shown that for slow-variant channels both methods

work fine. Anyway, when the system is dealing with variant channels, the one dimensional equalization

method performance is very poor, while the two dimensional method is nearly the same as for slow-variant

channel. As expected, both improve with the SNR.

Figure 8: Comparison of TU-6 BER for fdTu=0.01 and fdTu=0.1.

 Deliverable D2.2

ENGINES Page 14

Figure 9: Comparison of MR BER for fdTu=0.01 and fdTu=0.1.

2.6 Conclusions

In this work, we have presented a general equalization method for both LTI and LTV channels. We have

proved its reliability based on a theoretical analysis and some simulation results. Besides, using this

mathematical analysis a general channel classification in terms of the time variability is presented. Up to fdTu

= 0.02 the channel variation could be considered negligible, and therefore, these channels are conceived as

slow variant channels. Afterwards, from this point to fdTu = 0.1 the channels are considered time variant, as

the variation within a symbol is linear. Finally, when the variation is higher than fdTu > 0.1 the channel is

rapid variant.

3 A SHUFFLED ITERATIVE RECEIVER FOR THE DVB-T2 BIT-
INTERLEAVED CODED MODULATION: ARCHITECTURE DESIGN,
IMPLEMENTATION AND FPGA PROTOTYPING

3.1 Simplified Decoding of High Diversity Multi-Block Space-Time (MB-
STBC) Codes

This section presents a simplified detection algorithm, suitable for hardware implementation, for a Space-

Time Code (STC) proposed by Telecom Bretagne as a response to the DVB-NGH Call for Technology. The

performance of this STBC code is reported in the MIMO section of Deliverable D2.3 “Final report on

advanced concepts for DVB-NGH”.

3.1.1 Encoding of the proposed MB-STBC

The proposed STBC calls for a 2x4 matrix of the following form:

5 71 3

6 82 4

s ss s

s ss s

X (1)

 Deliverable D2.2

ENGINES Page 15

This structure allows the transmission of 8 signals 1 8s s through 2 antennas over 4 time slots. The first

(second) row of the matrix contains the 4 signals successively sent through the first (second) transmit

antenna.

We assume that the channel coefficients are constant during the two first and the two last time slots. In other

words, a quasi-orthogonal STBC structure spread over 4 slots. In a multi-carrier transmission system, this

property can be obtained by transmitting the signals of columns 1 and 2 (respectively of columns 3 and 4) of

X over adjacent subcarriers while the signals of columns 1 (respectively 2) and 3 (respectively 4) are

transmitted over distant subcarriers.

Two different channel matrices have then to be considered: H for the transmission of signals in columns 1

and 2 and H’ for the transmission of signals in columns 3 and 4:

11 12

21 22

h h

h h

H and
11 12

21 22

'
h h

h h

H (2)

Let us consider 8 modulation symbols 81 ss taken from an M-order 2-dimensional constellation C, where

in-phase I and quadrature Q components are correlated. This correlation can be obtained by applying a

rotation to the original constellation. The rotation angle should be chosen such that every constellation point

is uniquely identifiable on each component axis separately. This is equivalent to the first step performed for

SSD [14]. The representation of is in the complex plane is given by, iii jQIs , 81i . The proposed

construction of X involves the application of a two-step process:

Step 1: the first step consists in defining two subsets 1S and 2S of modified symbols is obtained from I and

Q components belonging to different symbols is . Each subset must only contain one component of each

symbol is of C. For instance:

 43211 ,,, ssssS and 87652 ,,, ssssS

where

644

533

822

711

jQIs

jQIs

jQIs

jQIs

 and

288

177

466

355

jQIs

jQIs

jQIs

jQIs

.

Symbols is belong to an extended constellation C’ of size M
 2
.

Step 2: the symbols 81 ss transmitted by X are defined as

*
2

*
14

*
4

*
33

432

211

sdscs

sdscs

sbsas

sbsas

 and

*
6

*
58

*
8

*
77

876

655

sdscs

sdscs

sbsas

sbsas

.

where s* represents the complex conjugate of s.

a, b, c and d are complex-valued parameters of the STBC. Signals s’’ belong to the STBC constellation

signal set C’’ different from C’.

 Deliverable D2.2

ENGINES Page 16

3.1.2 Simplified decoding of the MB-STBC code

The proposed MB-STBC code enjoys a structure that enables a simplified detection. Indeed, inspired by the

decoding process in [15], the decoding complexity can be greatly simplified without the need for a sphere

decoder [16]. If we denote by j

kr the signal received by the j th reception antenna, j = 1, 2, during time slot k,

where k = 1…4.

The four signals successively received by antenna 1 can be written as:

1

1 11 1 7 2 8

1

12 3 5 4 6 1

() ()

() ()

r h a I jQ b I jQ

h a I jQ b I jQ n

 (3)

1

2 11 3 5 4 6

1

12 1 7 2 8 2

() ()

() ()

r h c I jQ d I jQ

h c I jQ d I jQ n

 (4)

1

3 11 5 3 6 4

1

12 7 1 8 2 3

() ()

() ()

r h a I jQ b I jQ

h a I jQ b I jQ n

 (5)

1

4 11 7 1 8 2

1

12 5 3 6 4 4

() ()

() ()

r h c I jQ d I jQ

h c I jQ d I jQ n

 (6)

Simplified decoding is possible under the condition that the I and Q components of any si constellation

symbol are mapped to two different s’ symbols who are multiplied by the same STBC parameter a, b, c or d.

This constraint is respected in the structure of the STBC matrix X. Therefore, by re-arranging equations (3)

to (6) we obtain the following terms

j

ky :

1 1

1 1 11 2 8 12 4 6

1

11 1 7 12 3 5 1

() ()

() ()

y r b h I jQ h I jQ

a h I jQ h I jQ n

 (7)

1 1

2 2 12 2 8 11 4 6

1

12 1 7 11 3 5 2

() ()

() ()

y r d h I jQ h I jQ

c h I jQ h I jQ n

 (8)

1 1

3 3 11 6 4 12 8 2

1

11 5 3 12 7 1 3

() ()

() ()

y r b h I jQ h I jQ

a h I jQ h I jQ n

 (9)

1 1

4 4 12 6 4 11 8 2

1

12 5 3 11 7 1 4

() ()

() ()

y r d h I jQ h I jQ

c h I jQ h I jQ n

 (10)

In equations (7) to (10), the first line terms only depend on the I and Q components of even symbols s. Vice-

versa, second line terms depend solely on odd symbols. Therefore, applying a detection conditioned by the

knowledge of even terms is possible. In other words, for a loop on all possible values for 2 2 2S I jQ ,

4 4 4S I jQ , 6 6 6S I jQ and 8 8 8S I jQ (for a total of M
 4
 terms where M represents the order of the

constellation s) intermediate Zk terms can be computed as follows:

 Deliverable D2.2

ENGINES Page 17

* 1 * 2 1* 2*

11 1 21 1 12 2 22 2

1 *

h y h y h y h y
Z

a c

 (11)

* 1 * 2 1* 2*

12 1 22 1 11 2 21 2

2 *

h y h y h y h y
Z

a c

 (12)

* 1 * 2 1* 2*

11 3 21 3 12 4 22 4

3 *

h y h y h y h y
Z

a c

 (13)

* 1 * 2 1* 2*

12 3 22 3 11 4 21 4

4 *

h y h y h y h y
Z

a c

 (14)

By properly combining Zk terms, we obtain:

2 2 2 2

1 4 11 12 21 22 1

2 2 2 2

11 12 21 22 1 1 4

Re Im

Re Im

Z j Z h h h h I

j h h h h Q N j N

 (15)

2 2 2 2

2 3 11 12 21 22 3

2 2 2 2

11 12 21 22 3 2 3

Re Im

Re Im

Z j Z h h h h I

j h h h h Q N j N

 (16)

2 2 2 2

3 2 11 12 21 22 5

2 2 2 2

11 12 21 22 5 3 2

Re Im

Re Im

Z j Z h h h h I

j h h h h Q N j N

 (17)

2 2 2 2

4 1 11 12 21 22 7

2 2 2 2

11 12 21 22 7 4 1

Re Im

Re Im

Z j Z h h h h I

j h h h h Q N j N

 (18)

With the noise terms Nk being:

* 1 * 2 1* 2*

11 1 21 1 12 2 22 2

1 *

h n h n h n h n
N

a c

* 1 * 2 1* 2*

12 1 22 1 11 2 21 2

2 *

h n h n h n h n
N

a c

* 1 * 2 1* 2*

11 3 21 3 12 4 22 4

3 *

h n h n h n h n
N

a c

* 1 * 2 1* 2*

12 3 22 3 11 4 21 4

4 *

h n h n h n h n
N

a c

Equations (15) to (18) show that the combinations of Zk dependent terms are each a function of only one

iii jQIs symbol. Therefore a simple linear detection can be performed separately on all symbols in the

same loop since every Ii and Qi couple is unique. In addition, the diversity of 8 is clearly observed since the I

and Q components of every symbol depend on 4 different channel coefficients. Therefore, since SSD is

applied, every complex si signal enjoys an overall diversity of 8.

The detection of odd symbols on the second antenna is similar to the first antenna. For the joint detection of

even symbols, the following distance should be minimized:

 Deliverable D2.2

ENGINES Page 18

2
1

2 4 6 8 1 11 1 7 12 3 5

2
1

2 12 1 7 11 3 5

2
1

3 11 5 3 12 7 1

2
1

4 12 5 3 11 7 1

2
2

1 21 1 7 22 3 5

2
2

2 22 1 7 21 3 5

(, , ,) () ()

() ()

() ()

() ()

() ()

() ()

D s s s s y a h I jQ h I jQ

y c h I jQ h I jQ

y a h I jQ h I jQ

y c h I jQ h I jQ

y a h I jQ h I jQ

y c h I jQ h I jQ

y

2
2

3 21 5 3 22 7 1

2
2

4 22 5 3 21 7 1

() ()

() ()

a h I jQ h I jQ

y c h I jQ h I jQ

 (19)

The distance 2 4 6 8(, , ,)D s s s s of equation (19) can be directly computed from terms
j

ky (which depend on

2 4 6, ,s s s and 8s) of equations (7) to (10) and by replacing the I and Q components of odd constellation

symbol terms by their detected values from equations (15) to (18). Since 2 4 6 8(, , ,)D s s s s should be computed

for all possible combinations of even constellation symbols, the total number of computed terms is in the

order of M
4
.

Note that the simplified detection does not depend on the choice of the STBC parameters a, b, c and d. These

should be chosen depending on the rank, determinant, and shaping considerations.

3.2 A shuffled iterative receiver architecture for Bit-Interleaved Coded
Modulation systems

This section presents the design and implementation by Telecom Bretagne of an efficient shuffled iterative

receiver for the second generation of the terrestrial digital video broadcasting standard DVB-T2. The

scheduling of an efficient message passing algorithm with low latency between the demapper and the LDPC

decoder represents the main contribution of this study. The design and the FPGA prototyping of the resulting

shuffled iterative BICM receiver are then described. Architecture complexity and measured performance

validate the potential of iterative receiver as a practical and competitive solution for the DVB-T2 standard.

3.2.1 Introduction

The second generation of terrestrial video broadcasting standard (DVB-T2) was defined in 2008. The key

motivation behind developing a second generation is to offer high definition television services. One of the

key technologies in DVB-T2 is a new diversity technique called rotated constellations [17]. This concept can

significantly improve the system performance in frequency selective terrestrial channels thanks to Signal

Space Diversity (SSD) [18]. Indeed, SSD doubles the diversity order of the conventional BICM schemes and

improves the performance in fading channels especially for high coding rates [14]. When using conventional

QAM constellations, each signal component, in-phase (I) or quadrature (Q), carries half of the binary

information held in the signal. Thus, when a constellation signal is subject to a fading event, I and Q

components fade identically. In the case of severe fading, the information transmitted on I and Q components

suffers an irreversible loss. The very simple underlying idea in SSD involves transmitting the whole binary

content of each constellation signal twice and separately yet without loss of spectral efficiency. Actually, the

two projections of the signal are sent separately in two different time periods, two different OFDM

 Deliverable D2.2

ENGINES Page 19

subcarriers or two different antennas, in order to benefit from time or frequency or antenna diversity

respectively. When concatenated with Forward Error Correcting (FEC) codes, simulations [14] show that

rotated constellation provides up to 0.75 dB gain over conventional QAM on wireless channels. In order to

achieve additional improvement in performance, iterations between the decoder and the demapper (BICM-

ID) can be introduced. BICM-ID with an outer LDPC code was investigated for different DVB-T2

transmission scenarios [14]. It is shown that an iterative processing associated with SSD can provide

additional error correction capability reaching more than 1.0 dB over some types of channels. Thanks to

these advantages, BICM-ID has been recommended in the DVB-T2 implementation guidelines [19] as a

candidate solution to improve the performance at the receiver.

However, designing a low complexity high throughput iterative receiver remains a challenging task. One

major problem is the computation complexity at both the rotated QAM demapper and at the LDPC decoder.

In [20], a flexible demapper architecture for DVB-T2 is presented. Lowering complexity is achieved by

decomposing the rotated constellation into two-dimensional sub-regions in signal space. In [21], a novel

complexity-reduced LDPC decoder architecture based on the vertical layered schedule [22] and the

normalized Min-Sum (MS) algorithm is detailed. It closely approaches the full complexity message passing

decoding performance provided in the implementation guidelines of the DVB-T2 standard. Another critical

problem is the additional latency introduced by the iterative process at the receiver side. Iterative Demapping

(ID), especially due to interleaver and de-interleaver, imposes a latency that can have an important impact on

the whole receiver. Therefore, a more efficient information exchange method between the demapper and the

decoder has to be applied. We propose to extend the recent shuffled decoding technique introduced in the

turbo-decoding field [23] to avoid long latency. The basic idea of shuffled decoding technique is to execute

all component decoders in parallel and to exchange extrinsic information as soon as it is available. It forces

however a vertical layered schedule for the LDPC decoder as explained in [22]. In this context, processing

one frame can be decomposed into multiple parallel smaller sub-frame processing each having a length equal

to the parallelism level. While having a comparable computational complexity as the standard iterative

schedule, the receiver with a shuffled iterative schedule enjoys a lower latency. However, such a parallel

processing requires good matching between the demapping and the decoding processors in order to

guarantee a high throughout pipeline architecture. This calls for an efficient message passing between these

two types of processors.

Two main contributions are presented in this work. The first is the investigation of different schedules for the

message passing algorithm between the decoder and the demapper. The second represents the design and

FPGA prototyping of a shuffled iterative bit-interleaved coded modulation receiver. Section 3.2.2

summarizes the basic principles of the BICM-ID with SSD adopted in DVB-T2. Then, a shuffled iterative

receiver for BICM-ID systems is detailed in Section 3.2.3. In Section 3.2.4 the characteristics of efficient

iterative receiver architecture are presented. Finally, an implementation of the iterative BICM receiver and

its experimental setup onto FPGA device are given in Section 3.2.5.

3.2.2 BICM-ID system description

The BICM system is described in Figure 10. At the transmitter side, the messages u are encoded as the

codeword c. Afterwards, this codeword c is interleaved by and becomes the input sequence v of the

mapper. At each symbol time t, m consecutive bits of the interleaved sequence v are mapped into complex

symbol . At the receiver side, the demapper calculates a two-dimensional squared Euclidean distance to

obtain the bit LLR ̂
 of the i

th
 bit of symbol vt. These demapped LLRs are then de-interleaved and used as

inputs of the decoder. The extrinsic information is finally generated by the decoder and fed back to the

demapper for iterative demapping. The SSD introduces two modifications to the classical BICM system

shown in Figure 10. The classical QAM constellation is rotated by a fixed angle α. Its Q component is

 Deliverable D2.2

ENGINES Page 20

delayed for d symbol periods. Therefore, the in-phase and quadrature components of the classical QAM

constellation are sent at two different time periods, doubling the constellation diversity of the BICM scheme.

When a severe fading occurs, one of the components is erased and the corresponding LLRs could be

computed from the remaining component. The channel model used to simulate and emulate the effect of

erasure events is a modified version of the classical Rayleigh fading channel. More information about this

model is given in [20].

(b)

Bit interleaver

FEC

encoder

Rotated

QAM

mapper

cu v
x

Delay d

I

Q

Bit de-interleaver

Rotated

QAM

demapper

FEC

decoder
y

Delay dI

Q

v̂ ĉ û
-1

(a)

(b)

Figure 10: (a) The BICM with SSD transmitter (b) Conventional BICM-ID receiver.

A large set of transmitter configurations based on BICM system has been adopted into the DVB-T2 standard.

This wide choice is motivated by the sheer nature of a broadcast network. It should be able to adapt to

different geographical locations characterized by different terrain topologies. In the context of DVB-T2, the

DVB-S2 LDPC code (an Irregular Repeat Accumulate -IRA- code) was adopted as FEC code. An IRA code

is characterized by a parity check matrix composed of two submatrices: a sparse sub-matrix and a staircase

lower triangular sub-matrix. Moreover, periodicity has been introduced in the matrix design in order to

reduce storage requirements. Two different frame lengths (16200 bits and 64800 bits) and a set of different

code rates (1/2, 3/5, 2/3, 3/4, 4/5 and 5/6) are supported. A blockwise bit interleaver and a bit to constellation

symbol multiplexer is applied before mapping except for QPSK. Eight different Gray mapped constellations

with and without rotation are also supported by the standard, ranging from QPSK to 256-QAM.

3.2.3 A shuffled iterative receiver for DVB-T2

As previously explained, a major challenge in designing iterative receiver is to reduce the computation

complexity of the different parts of the receiver. In order to do this, the demapping and decoding algorithms

have to be derived to take hardware limitations into account.

3.2.3.1 The rotated demapping algorithm

For Gray-mapped QAM constellations, the demapper calculates two-dimensional Euclidean distance for the

computation of the LLR ̂
 related to the i

th
 bit of vt. The resulting ̂

 becomes:

0 1

1 1
() ()

2 2
0, , 0 0, , 0

ˆ
i i

j jt t

m m
euc t euc ti t t

t j j

j j i b j j i bx xw w

D x D x
v ext ext

 (20)

where is the square of the Euclidean distance between the constellation point and the equalized

 Deliverable D2.2

ENGINES Page 21

observation, i.e,

2 2

, ,() () ()I I Q Q

euc t t d eq t d t d t eq t tD x y x y x
 (21)

the operator denotes the Jacobian logarithm, i.e.,

max , log 1 exp , if 5

max , log 1 exp 5 , else

x y x y x y
x y

x y

 (22)

 is the a priori information of the i
th
 mapping bit of the symbol provided by the decoder after the

first iteration.
 and

 respectively represent the in-phase and quadrature components of the

equalized complex symbol . is a scalar representing the channel attenuation at time t.
 represents

the subset of constellation symbols with i
th
 bit b

i
= b, .

 is the Additive White Gaussian Noise

(AWGN) variance.

 To reduce the computation complexity of (20), a sub-region selection algorithm [20] is proposed to avoid

a complete search of signals in the constellation plane. However, when iterative processing is considered,

this algorithm becomes greatly sub-optimal since the selected region may not contain the minimum

Euclidean distance for the extrinsic information. Therefore, in this work the Max-log approximation

represents the only applied demapping simplification.

3.2.3.2 A vertical layered decoding scheme using a normalized

Min-Sum (MS) algorithm LDPC codes can be efficiently decoded using the Belief Propagation (BP)

algorithm. This algorithm operates on the bipartite graph representation of the code by iteratively exchanging

messages between the variable and check nodes along the edges of the graph. The schedule defines the order

of passing messages between all the nodes of the bipartite graph.

Since a bipartite graph contains some cycles, the schedule directly affects convergence rate of the algorithm

and hence its computational complexity. Efficient layered schedules have been proposed in literature [22].

Indeed, the parity check matrix can be viewed as a horizontal or a vertical layered graph decoded

sequentially. Decoding iteration is then split into sub-layer iterations. In [21], we have detailed a normalized

MS decoder architecture based on a Vertical Shuffled Schedule (VSS). The proposed VSS Min-Sum (VSS

MS) introduces only a small penalty with respect to a VSS using a BP algorithm while greatly reducing

decoding computational complexity. However, in the context of a BICM-ID receiver, the VSS MS algorithm

introduces an additional penalty and therefore reduces the expected performance gain. The main

simplification in the MS algorithm is that the check node update is replaced by a selection of the minimum

input value. In order to increase the accuracy of the check node processing, it is also possible to select more

than two minimum input values. In our case, we have considered three minimum input values for the check

node processing. It is denoted by VSS MS3 algorithm in the rest of this paper. According to our

investigations, the VSS MS3 algorithm offers the best compromise between Bit Error Rate (BER)

performance and decoding computational complexity for a BICM-ID receiver.

3.2.3.3 A joint algorithm for a shuffled iterative process

Iterative receiver hardware latency is often seen as a brake for their use in practical systems. The fact that

data are treated several times by rotated demapping and FEC decoding imposes a long delay before

delivering decoded bits. Consequently, the global scheduling of an iteration has to be optimized to limit

latency of the receiving process. In order to address this issue, we propose a vertical shuffle scheduling for

 Deliverable D2.2

ENGINES Page 22

the joint QAM demapping and LDPC decoding. The shuffled demapping and decoding algorithm is

summarized in Algorithm1. It is applied onto groups of Q symbols. First, a demapping process is applied to

estimate Q LLR values. Then, the decoding process is split into four tasks: check node processing, variable

node processing, variable node update and check node update. Both steps are repeated until the maximum

iteration number is achieved or a codeword has been found. The main advantage of such a scheduling is the

decrease of BICM-ID scheme latency. It also leads to a decrease in the number of required iterations for

similar BER performance.

Algorithm 1: Shuffled Parallel Demapping and Decoding Algorithm

Initialization

 [] []

repeat

t = t + 1

Demapping part

for all i do

0

1

1
()

2
0, , 0

1
()

2
0, , 0

1
ˆ max

1
max

i
t

j

i
t

j

m
i t

t euc t j
x

j j i bw

m
t

euc t j
x

j j i bw

v D x ext

D x ext

end for

Decoding part

for all n do

Check node processing

 {

 for

 {
 (

)

 (

)
 else

 for

Variable node processing

ˆ ,i

n tLLR v
 where

 1n i

()
()

()

, 1

, else

n
t

t
n

n mn

m M n

LLR t

T LLR E

() () ()t t t

mn n mnT T E

Variable node updating

() ()t t

n n next T LLR

Check node updating

 Deliverable D2.2

ENGINES Page 23

 (1) ()sgn sgn ,t t

m m mn mnT T

 m M n

'

'

'

10 0 0

1st

11 1 1

2nd

12 2 2

3rd

min , , index

min , , index

min , , index

t t

m mn m mmk

t t

m mn m mmk

t t

m mn m mmk

M T T P M

M T T P M

M T T P M

'where () \k N m n

end for

until or convergence to a codeword is achieved.

The decoded bits are estimated through

Several possible message passing schedules between the decoder and the demapper can be proposed. They

correspond to the different parallelism combinations between the partial update strategies at the demapper

and the decoder process. Schedules under consideration in our study, called A and B, are based on a VSS

decoding process with parallelism of 90. In other words, 90 variable nodes get updated and generate 90

extrinsics that are fed back to up to 90 demappers. If all bits originate from different symbols, then the

processing requires 90 demappers working in parallel. This clearly represents a worst case processing

scenario. The difference between schedule A and schedule B is in the number of the LLRs that is equal to

90.log2(M) and 90, respectively. Simulations have been carried out for both schedules. A comparison of

simulated BER performance for rotated 256-QAM over a fading channel with 15 % of erasures (DVB-T2

64K LDPC, rate R=4/5) is given in Figure 11. There is around 1.2 dB performance improvement @ 10
-4

 of

BER for the iterative floating point VSS BP receiver when compared to the non-iterative receiver. In a

BICM-ID context, the proposed VSS MS3 receiver entailed a small penalty of 0.3 dB with respect to VSS

BP. In both cases, schedules A and B have similar performance. Note that we have chosen schedule B for the

design of our iterative receiver architecture.

 Deliverable D2.2

ENGINES Page 24

Figure 11: Performance comparison for rotated 256-QAM over a fading channel with 15 % of erasures. DVB-T2 64K LDPC,

rate R=4/5

3.2.4 Design of an efficient iterative receiver architecture

The proposed architecture for the BICM-ID receiver is illustrated in Figure 12. One main demapper

progressively computes the Euclidean Distances (ECD) and corresponding LLR values. All this information

has to be memorized in LLR and ECD RAMs. Two types of those RAMs are allocated: one in charge of

reception and one in charge of decoding. The decoding part is composed of 90 check node processors and 90

variable node processors. In charge of updating LLRs, 90 simplified demappers process extrinsic feedback

generated by the decoder and the LLR RAM. Euclidean distances between the received observation and

constellation symbols are memorized instead of I and Q components and the according CSI information in

order to minimize the delay of the feedback-demapper. The updated LLRs are available only after two cycles

of introducing updated extrinsic information. In this way, the decoding part processes the latest updated

LLRs, even for the bits with a check node degree equal to 3.

2 1 2 2 2 3 2 4 2 5

Eb/N0(dB)

1 0
-3

1 0
-2

1 0
-1

1 0
-4

1 0
-5

1 0
-6

B
E

R

 ID Schedule C LDPC VSSBP floating P=90

 ID Schedule B LDPC VSSBP floating P=90

 ID Schedule C LDPC VSSMS3 floating P=90

 ID Schedule B LDPC VSSM S3 floating P=90

NID LDPC VSSM S3 floating P=1

256-QAM Fading erasure 15% R45 64K

I terat ive Non-Iterat ive

 Deliverable D2.2

ENGINES Page 25

Figure 12: The proposed architecture of the vertical iterative receiver

Classically, the deinterleaving process is done by first writing the interleaved LLRs produced by the main

demapper into a memory and then by reading them in the deinterleaving order by the decoding part. For

interleaving, the decoded LLRs are first written into a memory and then are read in the interleaving order by

the demapper. The DVB-T2 bit interleavers have been designed according to this principle. Encoded bits are

written into a block memory column by column, they are read row by row, and then are permuted by a

demultiplexer. Note that it is possible to replace the memory blocs by tables that directly address the

connections between the demapper and the decoder. In this case, the table specification has to take into

account the parallelism degree in the receiver architecture. Note that the DVB-T2 bit interleavers have been

designed for a parallelism degree of 360 in the decoding part as explained in [24]. Another critical difficulty

is the memory access conflicts for layered decoder architecture. These are due to the DVB-T2 parity check

matrix structure and can cause significant performance loss. To deal with this constraint, we extended the

reordering mechanism of the DVB-T2 parity check matrix detailed in [10] to a vertical layered schedule. We

also solved the message updating inefficiency caused by the double diagonal sub-matrices during the

decoder design as explained in [21]. The joint algorithm for a shuffled iterative receiver clearly brings

benefits compared to the non-iterative and iterative frame-by-frame conventional receiver. The proposed

schedule directly targets updating variable node. It facilitates the extrinsic information exchange between

demapping and decoding processors. Indeed, both the demapped and decoded extrinsic information can be

exchanged before the end of one frame processing. Let’s take for example a 256-QAM constellation and a

64K-LDPC with a code rate of 4/5 having 630 non-zero elements in its 360 by 360 parity-check matrix. A

parallelism degree of 90 is considered for the receiver. In order to perform one iteration for one coded frame,

a classical frame-by-frame horizontal schedule has a latency lHSS that can be expressed as:

 [(

)] (23)

In comparison, the proposed shuffled iterative receiver architecture has a latency lVSS:

 [(

)] (24)

Decoder
Processors

Demapper bf
Processors

Init LLRA Init LLRB

ecd LLRA ecd LLRB

Demapper Main

Interleaver

De-Interleaver

Decoder
Processors

Demapper bf
Processors

Init LLRA Init LLRB

ecd LLRA ecd LLRB

Demapper Main

Interleaver

De-Interleaver

Decoder
Processors

Demapper bf
Processors

Init LLRA Init LLRB

ecd LLRA ecd LLRB

Demapper Main

Interleaver

De-Interleaver

Decoder
Processors

Demapper bf
Processors

Init LLRA Init LLRB

ecd LLRA ecd LLRB

Demapper Main

Interleaver

De-Interleaver

frame1 frame2 frame3 frame4

d
e

m
a

p
p

in
g

d
e

c
o

d
in

g
d

e
m

a
p

p
in

g

fe
e

d
b

a
c

k

p
ro

c
e

s
s

e
s

time

BICM-ID core

 Deliverable D2.2

ENGINES Page 26

where is the delay of the interleaver table accesses. The iterative process convergence is then achieved

with a lower latency.

3.2.5 FPGA implementation and prototyping

Figure 13 shows the different components of the experimental setup implemented onto one Xilinx Virtex5

LX330 FPGA. A Pseudo Random Generator (PRG) sends out pseudo random data streams at each clock

period. An LDPC encoder processes the data streams. The codeword bits are then reordered thanks to the

DVB-T2 interleaver. The last task of the transmitter is the mapping. The channel emulator is obtained from

an AWGN generator of multiples variables. The hardware emulator is achieved using the Wallace method.

Moreover, erasure event modeling was added to the channel emulator. The BICM-ID receiver is made up of

a main rotated demapper and a BICM-ID core. This core is composed of 90 simplified demappers and 90

LDPC decoders. The proposed BICM-ID receiver was synthesized and implemented onto the FPGA.

Computational resources of the BICM-ID MS core takes up about 15 % and 51% of a Xilinx XC5VLX330

FPGA slice registers and slice LUTs, respectively. If a BICM-ID MS3 core is implemented, 17% slice

registers and 44% slice LUTs are necessary.

Figure 13: Experimental setup for prototyping the BICM-ID receiver

Table 3: HW resources for the two different BICM-ID cores

XC5VLX330 Flip-flops LUTs RAMs

BICM-ID VSS MS 17,371 93,130 179

BICM-ID VSS MS3 26,078 107,438 193

The maximum frequency estimated for the BICM-ID core after place and route is 80 MHz. It results in a

throughput of 107 Mbps, for R =4/5 @ 15 layered iterations. A comparison of simulated performance and

experimental setup measured performance in terms of BER of the designed BICM-ID receiver with VSS MS

and VSS MS3 decoding algorithm for a QPSK constellation, a code rate R =4/5 and 64,800 bit frames, is

presented in Figure 14. More than 10 dB gain is observed from the BICM-ID VSS MS receiver when

compared to the non-rotated QPSK in a non-iterative receiver. Moreover, an additional gain of 0.9 dB is

achieved for the iterative receiver with VSSMS3 decoding algorithm. These experimental results validate the

potential of BICM-ID systems as a practical solution for the DVB-T2 standard.

ro
ta

te
d

m
ap

p
er

R
ay

le
ig

h

ch
an

n
el

em
u

la
to

r XI

XQ

bit

SNR Erasure %

BER

computation

YI YQ

10 bits

11 bits 7 bits

eq
u

al
iz

er

Yeq
I

Yeq
Q

9 bits

ro
ta

te
d

d

em
ap

p
er

d d

d

bit

P
R

G

L
D

P
C

en
co

d e
r

in
te

rl
ea

v
er

bit

d
ei

n
te

rl
ea

v
er

8 bits

8 bits
9 bits
8 bits

L
D

P
C

d
ec

o
d

er

8 bits bit

8 bits

ILLR

QLLR

ILLR

QLLR

Iρ Qρ
ICSI QCSI

interleaver
6 bits

d

em
ap

p
er

fe
ed

b
ac

k

LLR

ECD

BICMID

core

 Deliverable D2.2

ENGINES Page 27

Figure 14: Performance comparison for QPSK over a fading channel with 15 % of erasures. 64K frames, DVB-T2 LDPC,

rate R =4/5

3.2.6 Conclusion

BICM-ID shows best theoretical performance in the implementation guidelines of the DVB-T2 standard. In

this paper, we have detailed a vertical schedule that favours an efficient data exchange between the demapper

and the decoder in an ID context. The designed architecture leads to limited complexity and latency and to an

acceleration of the iterative process convergence. Then, FPGA prototype characteristics and performance for

BICM-ID receivers based on a vertical schedule of MS and MS3 have been discussed. The iterative receiver

achieves high performance gain as expected. To the best of our knowledge, this is the first hardware

implementation of a BICM-ID receiver for the DVB-T2 standard.

4 EXPECTED DVB-T2 PERFORMANCE OVER TIME VARYING

ENVIRONMENTS
DVB-T2 constitutes the first second generation Digital Terrestrial Television (DTT) standard. Our focus will

be mainly to assess its mobile performance for modes that have been deployed (like the UK mode) or that

will soon be deployed (like the German candidate mode).

4.1 Mobile Channel Model

When receiving a DTT signal in a moving car, the mobile transfer channel can be modelled as a wideband

“Frequency-Selective” channel. Indeed, in this case, the transmitted bandwidth W (usually taking values

from 6 to 8 MHz) is much larger than Bc, the channel’s coherence bandwidth (of 100kHz approximately). Bc

is related to the maximum delay spread τmax (of about 10μs) by Bc=1/τmax. This type of fading can be

6 8 1 0 1 2 1 4 1 6 1 8

Eb/N0(dB)

1 0
-3

1 0
-2

1 0
-1

1 0
-4

1 0
-5

1 0
-6

1 0
-7

1 0
-8

B
E

R

ID ScheduleC VSSM S3 simulation fix

ID Schedule C VSSM S3 prototype

ID ScheduleC VSSM S2 prototype

NID VSSM S2 prototype

NID VSSM S2 prototype

BICM

QPSKRotated QPSK

BICM-ID

 Deliverable D2.2

ENGINES Page 28

modelled as a linear filter whose coefficients Ci are Gaussian complex (Rayleigh envelops), independent of

each other and filtered in order to have the desired Doppler spectrum. This is actually shown on the

following figure which illustrates the Typical Urban model with 6 paths (TU6 defined by COST 207).

Figure 15: Typical Urban model with 6 paths (TU6).

In the following sections we intend to analyse the statistic of the received signal in Single and Diversity

modes for both Narrowband (Rayleigh) and Wideband (TU6) channels. In addition, we define a performance

criteria measurement for mobile environments. The main objective is to theoretically determine how much

more signal power is needed for mobile reception versus fixed reception.

4.1.1 First order statistics: Signal distribution (rate independent)

The cumulative distribution function (cdf) is a first-order statistic (that is independent of the rate), which

gives the probability to obtain a C/N ratio below a certain threshold. For narrowband channels with a

Rayleigh distribution, the cdf formula is given in Table 1. It is also illustrated in Figures 2&3 for Single and

Diversity MRCmodes (M=1 to 4 branches) versus Γ, the mean C/N and γ the C/N threshold crossed by the

signal.

Figure 16: Single & Diversity 2 fade duration and Level Crossing.

 Deliverable D2.2

ENGINES Page 29

Figure 17: Rayleigh and TU6 cumulative distribution functions.

Please note that for the TU6 channel model, the cdf does not follow a Rayleigh law, but rather a “Non-

central Chi-square law with 12 degrees of freedom”. This is simulated and in Figure 17 it corresponds to the

curves with dashed lines for the Single and Diversity 2 cases.

4.1.2 Second order statistics: Signal rate distribution (LCR, AFD, Doppler)

Second-order statistics are concerned with the distribution of the signal’s rate channel change, rather than the

signal itself. In a fixed or a slowly time varying environment, the Doppler effect is negligible. As soon as the

receiver moves the channel varies through time and the carriers are no longer pure sine waves.

The Doppler shift Fd is given by:

Fd = Fc (v/c) cos α,

where Fc is the carrier frequency, v is the speed of the vehicle, c the speed of light and α the angle between

the direction of motion and the arrival direction of the signal (see Figure 18). The maximum Doppler

frequency is fDm = Fc (v/c) for α = 0.

Figure 18: The Doppler effect. Figure 19: The classical Doppler spectrum.

Assuming a uniform distribution of the angle α, from -π to +π, the power spectrum of the received signal is

 Deliverable D2.2

ENGINES Page 30

called “Classical Doppler Spectrum” (or “Jake’s spectrum”) and is illustrated in Figure 19.

Finally, the Doppler frequency spectrum, the Level Crossing Rate (LCR) and the Average Fade Duration

(AFD) characterise the dynamic representation of the mobile channel. As shown in Figure 16:

 The LCR is defined as the number of time per unit duration that the fading envelope crosses a given

value in the negative, or positive, direction. Practically, the LCR gives the number of fades per

second under a given threshold level and it is equal to the Erroneous Second Rate (ESR) criterion:

LCR = ESRx, for x≤10%

 The AFD is the average time duration for which the fading envelope remains below a specified level.

Both LCR and AFD provide important information about the statistics of burst errors. The latter facilitates

the design and selection of error-correction techniques. It should be pointed out that adding/increasing time

interleaving will decrease both LCR and AFD, even for the case of single reception.

The following table gives the theoretical formulas for cdf, LCR, and AFD with respect to the diversity order

M and γ/Γ.

Table 4: Theoretical cdf, LCR and AFD for a Rayleigh’s distribution fadings combined in MRC Diversity (Γ = average C/N).

For MRC Diversity (up to order 4), Figure 20 illustrates the Level Crossing Rate and Figure 21 the Average

Fade Duration normalized with respect to fDm, the maximum Doppler frequency. For the Rayleigh

distribution the formulas of Table 4 are used, while the TU6 statistics have been simulated.

Figure 20: Normalized Level Crossing Rate with respect to (γ/Γ).

 Deliverable D2.2

ENGINES Page 31

Figure 21: Normalized Average Fade Duration with respect to (γ/Γ).

When there is no time interleaving (like in DVB-T) Figure 20 is very useful for determining the simulated

(γ/Γ) threshold leading to a given ESR. For example, to be consistent with the ESR5 criteria (5% of

erroneous second) with a Doppler frequency of 10 Hz, Figure 20 shows that in TU6 channels Γ (i.e. the mean

C/N) must be greater by at least 9.5 dB over γ (the Gaussian threshold of reception) in Single and greater by

only 1.7 dB in Diversity 2, which gives a simulated Diversity gain of approximately 8dB. Considering a

Doppler frequency of 100 Hz the diversity gain is slightly higher. It should be pointed out that these results

are theoretical and represent the maximal performance for any standard lacking time interleaving.

Figure 21 shows that the average fading duration is divided by 2 when moving from Single to Diversity 2

and by 4 from Single to Diversity 4, independent of the (γ/Γ) value. Therefore, by adding time-interleaving,

it is possible to improve mobile performance in Single vs Gaussian. However in this case, the diversity gain

is reduced, since the two gains are not added.

4.1.3 Additional Doppler effects

In addition to increasing the number of fades per second, the Doppler effect spreads the OFDM sub-carriers

(“FFT Leakage”), which destroys their orthogonality and therefore it creates Inter Carrier Interference (ICI).

In order to compare the theoretical mobile performance of the receiver to the one tested in the laboratory

with a TU6 channel simulator, it is necessary to plot (Γ/γ) versus the Doppler frequency for the ESR5

criterion. As illustrated in Figure 22, the quasi-horizontal parts of the curves are derived directly from Figure

20. Nevertheless, as expected, after a given Doppler limit, the receiver is not able to demodulate the signal.

Then, when the Doppler (i.e. the speed of the mobile) further increases, the recovery performance degrades

drastically until a point where no demodulation is possible, even with a very high C/N, which explains the

quasi vertical lines measured in laboratory testing.

In order to have good Mobile performance even with single receivers, DiBcom/Parrot´s chips integrate

sophisticated signal processing algorithms such as “Dynamic FFT positioning”, “Fast channel estimation”,

“FFT leakage removal”, etc….

However as the Doppler shift increases, it becomes necessary to use Diversity which dramatically decreases

both the rate and the duration of fades. This results to a gain of the required average C/N by a value between

4 to 8 dB, which depends on the standards’ physical layer (i.e. existence of time interleaving, …).

 Deliverable D2.2

ENGINES Page 32

Figure 22: (γ/Γ) with respect to FDoppler.

In order to characterize the receiver speed limit it was agreed (in the Motivate, WING TV projects and

MBRAI specification) to consider the maximum achievable Doppler frequency as the value for: (C/N) min

@10 Hz +3dB. The asymptotic Doppler Frequency @ (C/N) max has no actual meaning, since in practise

the C/N seen in the field is never higher than ~30dB. Concerning high Doppler frequency shift, the field test

results obtained in a car equipped with a Parrot diversity receiver showed a strong correlation with the data

obtained in a laboratory environment with a TU6 channel simulator.

In the Section 4.3 the S and D measurement points of Figure 22 are reported on a graph for most of the DTT

standards in order to compare their mobile performance.

4.2 DVB-T2 Simulation Results

In order to simulate the performance of DVB-T2 we decided to consider the UK profile and a German-

candidate profile. Even those two T2 modes by far are not the most optimized T2 versions for mobility, they

constitute profiles that either have been already deployed (UK case) or will be shortly deployed (German

case). The next Table shows the parameters that were used for the two DVB-T2 modes that are tested in this

section.

Table 5: Tested DVB-T2 modes.

UK mode (potential) German mode

FFT = 32K

GI = 1/128

LDPC: 64800

CR = 2/3

256-QAM

PP7

Ext. BW: On

Single PLP (max time interleaving ~71ms)

FFT = 16K

GI = 19/128

LDPC: 16200

CR = 2/3

16-QAM

PP2

Ext. BW: Off

Single PLP (max time interleaving ~83ms)

Due to time and resources limitations, for each C/N simulated point the maximum number of LDPC

codewords was up to 93800 for the UK case and 179400 for the German case. These numbers correspond to

simulating roughly ~100 seconds of real time signal. Once we decoded the entire 100 seconds duration of the

real time signal without any errors, this point was considered to satisfy the ESR5 criterion.

In Figure 23 and Figure 24 we present the BER and BLER (block error rate, where 1 block is 1 LDPC

 Deliverable D2.2

ENGINES Page 33

codeword) for the UK and German modes. A TU6 channel has been simulated with a Doppler equal to 10Hz.

Both single and Diversity 2 reception are depicted. For the latter case, we have generated two uncorrelated

TU6 channels, and at the two signals were summed according to the well-known maximum ratio combining

(MRC) method. For both modes the QEF (i.e. ESR5 criterion) diversity 2 reception offers a gain of the order

of 5dBs. As expected, the German-candidate mode performs at a much lower C/N. This is mainly due to the

lower constellation (more robust) and the lower FFT size (introducing a lower amount of ICI for the same

Doppler frequency). The maximum achievable Doppler frequency (as previously defined, i.e. the value for:

(C/N)min @10 Hz +3 dB) for the UK mode is around 16 and 28Hz for single and diversity 2. This rather

poor performance was expected (largest FFT, largest constellation,…). On the other hand the simulated

German-candidate mode attains a maximum Doppler of 100Hz for single and 122Hz in diversity 2 reception.

Figure 23: BER in Single and Diversity 2 for the German and UK modes.

 Deliverable D2.2

ENGINES Page 34

Figure 24: BLER in Single and Diversity 2 for the German and UK modes.

4.3 Mobile Performance of Worldwide DTT standards

Thanks to the multi-standard capacity of Octopus, it is possible to compare the actual mobile performances

of most DTT configurations used in the World with the simulations described in the previous chapters. Table

6 offers the possibility to compare fixed (Gaussian) with mobile (TU6) performance and shows the

maximum speeds attainable in Single and Diversity 2. Please note that the performance of all the standards is

measured in Laboratory testing. The only exception is DVB-T2 whose performance has been simulated as it

has been shown in the previous section.

Table 6: Mobile performance of worldwide DTT standards.

 Deliverable D2.2

ENGINES Page 35

Figure 25: FdMax in Single and Diversity reception with respect to C/N for TU6@10Hz.

4.4 Conclusion

The pressure on broadcasters to gain spectrum is creating a need to use high spectrum efficiency standards

such as DVB-T2. As seen on Figure 25, the UK-mode of DVB-T2 maximizes the useful bit-rate focusing

only on fixed applications. Therefore, it presents a very poor performance in mobile conditions. Even if the

maximum speed is ~55km/h, when using a Diversity 2 receiver, the required C/N remains quite high, at the

order of ~23dB.

On the other hand, the candidate German-mode, which is very likely to adopt a 16K FFT (with either 16-

QAM or 64-QAM), constitutes a good compromise between data rate and mobile performance. Its data rate

is increased with respect to DVB-T and in addition it presents a good mobile performance.

 Deliverable D2.2

ENGINES Page 36

5 FAST GPU AND CPU IMPLEMENTATIONS OF AN LDPC DECODER
This work has been published in [31].The DVB-T2 standard makes use of two FEC codes, featuring LDPC

(low-density parity-check) codes [32] with exceptionally long codeword lengths of 16200 or 64800 bits as

the inner code. As outer code, a BCH (Bose-Chaudhuri-Hocquenghem) code is employed to reduce the error

floor caused by LDPC decoding. The second generation digital TV standards for satellite and cable

transmissions, DVB-S2 and DVB-C2, respectively, also employ very similar LDPC codes to DVB-T2.

Because of the long LDPC codewords, the decoding of these codes is one of the most computationally

complex operations in a DVB-T2 receiver [33].

In this work, a method for highly parallel decoding of the long LDPC codes using GPUs (graphics

processing units) and general purpose CPUs (central processing units) is proposed. While a GPU or CPU

implementation is likely less energy efficient than implementations based on for example ASICs

(application-specific integrated circuits) and FPGAs (field programmable gate arrays), GPUs and CPUs have

other advantages. Even high-end GPUs and CPUs are often quite affordable compared to capable FPGAs,

and this hardware can be found in most personal home computers. Although originally developed for

graphics processing, modern GPUs are also highly reconfigurable similarly to general purpose CPUs. These

advantages make a GPU or CPU implementation interesting for software defined radio (SDR) systems built

using commodity hardware, as well as for testing and simulation purposes.

Algorithms and data structures that allow for reaching the LDPC decoding throughput bitrates required by

DVB-T2, DVB-S2, and DVB-C2 when implemented on a modern GPU, are described in this report. While

the design decisions are generally applicable to GPU architectures overall, this particular implementation is

built on the NVIDIA CUDA (Compute Unified Device Architecture)[34], and tested on an NVIDIA GPU.

The performance of the GPU implementation is also compared to a highly efficient multithreaded CPU

implementation written for a consumer-grade Intel CPU. Furthermore, the impact of limited numerical

precision as well as applied algorithmic simplifications on the error correction performance of the decoder is

examined. This is accomplished through comparing the error correction performance of the proposed

optimized implementations to more accurate CPU-based LDPC decoders, by simulating transmissions within

a DVB-T2 physical layer simulator.

5.1 LDPC Codes

A binary LDPC code [32] with code rate r=k/n is defined by a sparse binary (n-k)×n parity-check matrix, H.

A valid codeword x of length n bits of an LDPC code satisfies the constraint Hx
T
=0. As such, the parity-

check matrix H describes the dependencies between the k information bits and the n-k parity bits. The code

can also be described using bipartite graphs, i.e., with n variable nodes and n-k check nodes. If Hi,j=1, then

there is an edge between variable node j and check node i.

LDPC codes are typically decoded using iterative belief propagation (BP) decoders. The procedure for BP

decoding is the following. Each variable node v sends a message Lv→c of its belief on the bit value to each of

its neighboring check nodes c, i.e. those connected to the variable node with edges. The initial belief

corresponds to the received Log-Likelihood Ratios (LLR), which are produced by the QAM (Quadrature

Amplitude Modulation) constellation demapper in a DVB-T2 receiver. Then each check node c sends a

unique LLR Lc→v to each of its neighboring variable nodes v, such that the LLR sent to v' satisfies the parity-

check constraint of c when disregarding the message Lv'→c that was received from the variable node v'. After

receiving the messages from the check nodes, the variable nodes again send messages to the check nodes,

where each message is the sum of the received LLR and all incoming messages Lc→v except for the message

 Deliverable D2.2

ENGINES Page 37

Lc'→v that came from the check node c' to where this message is being sent. In this step, a hard decision is

also made. Each variable node translates the sum of the received LLR and all incoming messages to the most

probable bit value and an estimate on the decoded codeword ̂ obtained. If H ̂T
=0, a valid codeword has

been found and a decoding success is declared. Otherwise, the iterations continue until either a maximum

number of iterations has been performed or a valid codeword has been found.

The LDPC decoder is one of the most computationally complex blocks in a DVB-T2 receiver, especially

given the long codeword lengths (n is 16200 or 64800, while k varies with the code rate used) specified in

the standard. The best iterative BP decoder algorithm is the sum-product decoder [35], which is also,

however, quite complex in that it uses costly operations such as hyperbolic tangent functions. The min-sum

[36][37] decoder trades some error correction performance for speed by approximating the complex

computations of outgoing messages from the check nodes. The resulting computations that are performed in

the decoder are the following. Let C(v) denote the set of check nodes which are connected to variable node v.

Similarly let V(c) denote the set of variable nodes which are connected to check node c. Furthermore, let

C(v)\c represent the exclusion of c from C(v), and V(c)\v represent the exclusion of v from V(c). With this

notation, the computations performed in the min-sum decoder are the following:

1. Initialization: Each variable node v sends the message Lv→c(xv) = LLR(v).

2. Check node update: Each check node c sends the message

 (∏

)

| |

 where sign(x) = 1 if x ≥ 0 and -1 otherwise.

3. Variable node update: Each variable node v sends the message

 ∑

 and computes

 ∑

4. Decision: Quantize ̂ such that ̂ if , and ̂ if . If H ̂T
=0, ̂ is a valid

codeword and the decoder outputs ̂. Otherwise, go to step 2.

5.2 Hardware Architectures

In this section follows a description of the NVIDIA CUDA, and the specific GPU for which the GPU-based

implementation was developed. Other relevant components of the system used for benchmarking the decoder

implementations are also described, including the Intel CPU which was also the target for the CPU-

optimized LDPC decoder.

5.2.1 CUDA

The NVIDIA CUDA[34] is used on modern NVIDIA GPUs. The architecture is well suited for data-parallel

problems, i.e problems where the same operation can be executed on many data elements at once. At the

 Deliverable D2.2

ENGINES Page 38

time of writing this report, the latest variation of the CUDA used in GPUs was the Fermi architecture [38],

which offers some improvements over earlier CUDA hardware architectures, such as an L1 cache, larger on-

chip shared memory, faster context switching etc.

In the CUDA C programming model, we define kernels, which are functions that are run on the GPU by

many threads in parallel. The threads executing one kernel are split up into thread blocks, where each thread

block may execute independently, making it possible to execute different thread blocks on different

processors on a GPU. The GPU used for running the LDPC decoder implementation described in this paper

was an NVIDIA GeForce GTX 570, featuring 15 streaming multiprocessors (SMs) containing 32 cores each.

The scheduler schedules threads in groups of 32 threads, called thread warps. The Fermi hardware

architecture features two warp schedulers per SM, meaning the cores of a group of 16 cores on one SM

execute the same instruction from the same warp.

Each SM features 64 kB of fast on-chip memory that can be divided into 16 kB of L1 cache and 48 kB of

shared memory ("scratchpad" memory) to be shared among all the threads of a thread block, or as 48 kB of

L1 cache and 16 kB of shared memory. There is also a per-SM register file containing 32,768 32-bit

registers. All SMs of the GPU share a common large amount of global RAM memory (1280 MB for the

GTX 570), to which access is typically quite costly in terms of latency, as opposed to the on-chip shared

memories.

The long latencies involved when accessing global GPU memory can limit performance in memory intensive

applications. Memory accesses can be optimized by allowing the GPU to coalesce the accesses. When the 32

threads of one warp access a continuous portion of memory (with certain alignment limitations), only one

memory fetch/store request might be needed in the best case, instead of 32 separate requests if the memory

locations accessed by the threads are scattered [34]. In fact, if the L1 cache is activated (can be disabled at

compile time by the programmer), all global memory accesses fetch a minimum of 128 bytes (aligned to 128

bytes in global memory) in order to fill an L1 cache line. Memory access latencies can also be effectively

hidden if some warps on an SM can run arithmetic operations while other warps are blocked by memory

accesses. As the registers as well as shared memories are split between all warps that are scheduled to run on

an SM, the number of active warps can be maximized by minimizing the register and shared memory

requirements of each thread.

5.2.2 Measurement setup and CPU

The desktop computer system, of which the GeForce GPU was one component, also contained an Intel Core

i7-950 main CPU running at a 3.06 GHz clock frequency. This CPU has 4 physical cores, utilizing Intel

Hyper-Threading technology to present 8 logical cores to the system [39]. 6 GB of DDR3 RAM (Double

Data Rate 3 random access memory) with a clock frequency of 1666 MHz was also present in the system.

The operating system was the Ubuntu Linux distribution for 64-bit architectures.

The CPU supports the SSE (Streaming SIMD Extensions) SIMD (single instruction, multiple data)

instruction sets[39] up to version 4.2. These vector instructions, operating on 128-bit registers, allow a single

instruction to perform an operation on up to 16 packed 8-bit integer values (or 8 16-bit values, or 4 32-bit

values) at once. There are also instructions operating on up to 4 32-bit floating point values. The optimized

CPU-based LDPC decoder described in this report exploits these SIMD instructions in combination with

multithreading to achieve high decoding speeds. For multithreading, the POSIX (Portable Operating System

Interface) thread libraries are utilized.

Another possible approach to building a CPU decoder is to compile the CUDA code directly for the Intel

CPU architecture using an appropriate compiler [39]. It is also possible to write the GPU kernels within the

 Deliverable D2.2

ENGINES Page 39

OpenCL (Open Computing Language) framework [41] instead of CUDA, as OpenCL compilers are

available for both the GPU and CPU. Both of these approaches would still most likely require tuning the

implementation separately for the two target architectures in order to achieve high performance, however. As

the focus here lies on performance rather than portability, the CPU decoder was implemented using more

well established CPU programming methods.

5.3 Decoder Implementation

The GPU-based LDPC decoder implementation presented here consists mainly of two different CUDA

kernels, where one kernel performs the variable node update, and the other performs the check node update.

These two kernels are run in an alternating fashion for a specified maximum number of iterations. There is

also a kernel for initialization of the decoder, and one special variable node update kernel, which is run last,

and which includes the hard decision (quantization) step mentioned in section 5.1.

The architecture of the optimized CPU implementation is very similar to the GPU version. On the CPU, the

kernels described above are implemented as C functions which are designed to run as threads on the CPU.

Each single thread on the CPU, however, does significantly more work than a single thread running on a

CUDA core.

5.3.1 General decoder architecture

For storage of messages passed between check nodes and variable nodes, 8-bit precision is used. As the

initial LLR values were stored in floating point format on the host, they were converted to 8-bit signed

integers by multiplying the floating point value by 2, and keeping the integer part (clamped to the range

[]). This resulted in a fixed point representation with 6 bits for the integer part and 1 bits for the

decimal part. The best representation in terms of bit allocation is likely dependent on how the LLR values

have been calculated and the range of those values. The mentioned bit allocation was found to give good

results in simulations, however this report does not focus on finding an optimal bit allocation for the integer

and decimal parts. After this initial conversion (which is performed on the CPU), the LDPC decoder

algorithms use exclusively integer arithmetic.

GPU memory accesses can be fully coalesced if 32 consecutive threads access 32 consecutive 32-bit words

in global memory, thus filling one cache line of 128 bytes. In order to gain good parallelism with regard to

memory access patterns, the decoder was designed to decode 128 LDPC codewords in parallel. When

reading messages from global memory, each of the 32 threads in a warp reads four consecutive messages

packed into one 32-bit word. The messages are stored in such a way that the 32 32-bit words read by the

threads of a warp are arranged consecutively in memory, and correspond to 128 8-bit messages belonging to

128 different codewords. This arrangement leads to coalescing of memory accesses. Computed messages are

written back to global memory in the same fashion, also achieving full coalescence. While the Core i7 CPU

only has 64 byte cache lines, the CPU decoder was also designed to decode 128 codewords at once, in order

to keep the data structures of the GPU and CPU implementations equal (this decision should not decrease

performance).

Two compact representations, HVN and HCN, of the parity check matrix H are used. The data structures were

inspired by those described in [42]. To illustrate these structures, the following simple example H matrix is

used:

 (

)

 Deliverable D2.2

ENGINES Page 40

HCN would then be an array of entries consisting of a cyclic index to the entry corresponding to the next one

in the same row of the H matrix, while entries in HVN would contain an index to the entry corresponding to

the next one in the same column. Each entry in HCN and HVN thus represent an edge between a variable node

and a check node in the bipartite graph corresponding to H. The HCN and HVN structures corresponding to the

example H matrix are illustrated in Figure 26.

Figure 26: The arrays HCN and HVN corresponding to example H matrix.

A separate array structure, M, is used to store the actual messages passed between the variable and check

node update phases. The M structure contains 128 messages for each one (edge) in H, corresponding to the

128 codewords being processed in parallel. Each entry in M is one byte in size. The structure is stored in

memory so that messages corresponding to the same edge (belonging to different codewords) are arranged

consecutively. The entry M(i×128+w) thus contains the message corresponding to edge i for the w:th

codeword.

Furthermore, two structures (arrays) Rf and Cf are used to point to the first element of rows and columns,

respectively, of the H matrix. For the example H matrix, we have , and

 . The structure LLR contains the received initial beliefs for all codewords, and will

have elements for an LDPC code of length . contains the initial belief for bit

of codeword .

5.3.2 GPU Algorithms

In this subsection follows a more detailed description of the functionality in the GPU kernels. For the

variable node update, each thread processes four consecutive codewords for one column of H, and similarly

each thread of the check node update kernel will process one row of H. Thus, 32 consecutive threads will

process one column or row for all 128 codewords.

The procedure for the variable node update is roughly as follows, given an LDPC code defined by an

 parity check matrix. We launch threads in total.

1. Given global thread id , we process column ⌊

⌋ of H, and codewords

 to .

2. Read four consecutive LLR values starting from into 4-element vector .

We expand these values to 16-bit precision to avoid wrap around problems in later additions.

 Deliverable D2.2

ENGINES Page 41

3. Let

4. For all edges in column :

4.1. Copy the four consecutive messages (8-bit) starting from into 4-element

vector This is achieved by reading one 32-bit word from memory.

4.2. Add, element wise, the elements of to the elements of , and store the results in .

4.3. Let If , we have processed all edges.

5. For all edges in column :

5.1. Again, copy four messages (8-bit) starting from into 4-element vector

5.2. Perform (element-wise subtraction of four elements), clamp the resulting values

to the range [] (since contains 16-bit integers, and contains 8-bit

integers) and store the result in .

5.3. Copy back to the memory positions of to .

5.4. Let . If , we have processed all edges.

6. Variable node update completed.

The check node update launches threads, and the procedure is the following:

1. Given global thread id , we process row ⌊

⌋ of , and codewords to

 .

2. Define four 4-element vectors and . Initialize elements of to 1, and

elements of and to 127.

3. Let

4. Let (iteration counter).

5. For all edges in row :

5.1. Copy four consecutive messages starting from into 4-element vector

 .

5.2. For all element indices [], if | | , let | | and set

 . Otherwise, if | | , let | |.
5.3. Also, for all [], let be negative if is negative, and

positive otherwise.

5.4. Set equal to .

5.5. Let If , we have processed all edges.

6. Let .

7. For all edges in row :

7.1. Copy four consecutive messages starting from into 4-element vector

 .

7.2. For all [], if , let ()

Otherwise, if , let .

7.3. Copy back to memory positions of to .

7.4. Set equal to .

7.5. Let If , we have processed all edges.

8. Check node update completed.

The special variable node update kernel that includes hard decision, adds an additional step to the end of the

 Deliverable D2.2

ENGINES Page 42

variable node update kernel. Depending on if , for [], is positive or negative, a zero or one is

written to index of an array structure as specified in the last step of the min-sum decoder

procedure described in section 5.1. The structure is copied back from the GPU to the host upon completed

decoding.

5.3.3 CPU Algorithms

As mentioned, each single thread in the CPU version performs a larger amount of the total work than in the

GPU case. As integer SSE instructions operating on 128-bit (16-byte) registers are used, 16 8-bit messages

belonging to 16 different codewords are generally operated on in each SSE instruction. In the variable node

update, each thread computes a fraction (depending on the preferred number of CPU threads) of the columns

of for all 128 codewords. Likewise, a check node update thread computes a fraction of the rows for all

codewords. As in the GPU implementation, the lifetime of one CPU thread is one iteration of either a

variable node update or a check node update.

The procedure for the variable node update is as follows, given an LDPC code defined by an

parity check matrix. We launch threads, where the optimal depends on factors such as CPU core

count. Let [] denote the current thread. Hexadecimal values are written using the prefix.

1. Given thread id , we process columns [

], and for each column, we process

8 groups of 16 codewords, [].
2. Let .

3. Read sixteen consecutive LLR values starting from into 16-element vector

 .

4. Let

5. For all edges in column :

5.1. Copy the sixteen consecutive messages (8-bit) starting from into 16-

element vector .

5.2. Add, element-wise, the elements of to the elements of and store the results in

(SSE PADDSB saturating addition instruction).

5.3. Let . If , we have processed all edges.

6. For all edges in column c:

6.1. Copy the sixteen consecutive messages starting from into 16-element

vector .

6.2. Perform and store result in . The SSE PSUBSB saturating subtraction

instruction is used for this.

6.3. If any element in is equal to , set it to . Performed by comparing to a

vector containing only using the PCMPEQB instruction, followed by the

PBLENDVB instruction to replace values of with in .

6.4. Copy back to the memory positions of to .

6.5. Let . If , we have processed all edges.

7. Variable node update completed.

In the CPU implementation there is also a special variable node update function including hard decision.

This function calculates the hard decision using SSE instructions by right shifting the values of by 7 bits,

so that the sign bit becomes the least significant bit. All bits other than the least significant are set to zero,

 Deliverable D2.2

ENGINES Page 43

giving us the hard decision bit values as bytes. Elements equal to are set to in step 6.3 to make

the range of positive and negative values equal. Failing to do so was found to result in disastrous error

correction performance.

The check node update launches threads, and [] denotes the current thread. The procedure is

the following:

1. Given thread id , we process rows [

], and for each column, we

process 8 groups of 16 codewords, [].
2. Let .

3. Define 16-element vectors , , , and . Initialize elements of to 1, and

elements of and to .

4. Let

5. Let (iteration counter).

6. For all edges in row :

6.1. Copy sixteen consecutive messages starting from into vector .

6.2. Compute , and store result in . SSE PXOR instruction for bitwise XOR

operation on two 128-bit registers is used.

6.3. Compute element-wise absolute values of , and store result in , using the SSE

instruction PABSB for absolute value.

6.4. [], let the value of be if , and

otherwise. The SSE instruction PCMPGTBr accomplishes this.

6.5. [], let the value of be if , and

otherwise (PCMPGTBr instruction).

6.6. [], let if equals , and otherwise let

 The SSE instruction PBLENDVB is used.

6.7. [], let if equals , and otherwise let

 (PBLENDVB).

6.8. [], let if , and otherwise let
 (PBLENDVB).

6.9. [], let if , and otherwise let

(PBLENDVB).

6.10. Set equal to .

6.11. Let . If , we have processed all edges.

7. Let
8. [], let equal if , and otherwise. This is

accomplished by the SSE PCMPGTBr instruction (compare to zero vector).

9. For all edges in row :

9.1. Copy sixteen consecutive messages starting from into vector .

9.2. [], let the value of be if , and otherwise. SSE

instruction PCMPEQB accomplishes this.

9.3. [], let the value of be if , and otherwise

(PCMPGTBr).

9.4. [], let (PXOR).

9.5. [], let (SSE POR instruction).

 Deliverable D2.2

ENGINES Page 44

9.6. [], let equal – if , and otherwise. The

SSE instruction PSIGNB is used for this.

9.7. [], let equal if , and otherwise

(PSIGNB).

9.8. [], let if equals , and otherwise let

 (PBLENDVB).

9.9. Copy back to the memory positions of to .

9.10. Set equal to .

9.11. Let . If , we have processed all edges.

10. Check node update completed.

5.3.4 Optimization strategies - GPU

Notice that, in both main CUDA kernels, the same four elements are copied to from twice (once in

each loop). The second read could have been avoided by storing the elements into fast on-chip shared

memory the first time. Through experiments, however, it was observed that significantly improved

performance could be reached by not reserving the extra storage space in shared memory. This is mostly due

to the fact that we can instead have a larger number of active threads at a time on an SM, when each thread

requires fewer on-chip resources. A larger number of active threads can effectively “hide” the latency caused

by global memory accesses.

Significant performance gains were also achieved by using bit twiddling operations to avoid branches and

costly instructions such as multiplications in places where they were not necessary. The fact that this kind of

optimizations had a significant impact on performance suggests that this implementation is instruction bound

rather than memory access bound despite the many scattered memory accesses performed in the decoder.

Through profiling of the two main kernels, the ratio of instructions issued per byte of memory traffic to or

from global memory was found to be significantly higher than the optimum values suggested in optimization

guidelines [43], further suggesting that the kernels are indeed instruction bound.

An initial approach at an LDPC decoder more closely resembled the implementation described in [42], in

that one thread was used to update one message, instead of having threads update all connected variable

nodes or check nodes. This leads to a larger number of quite small and simple kernels. This first

implementation was however significantly slower than the currently proposed implementation. One major

benefit of the proposed approach is that fewer redundant memory accesses are generated, especially for

codes where the average row and/or column degree is high.

As mentioned in section 5.2.1, the Fermi architecture allows the programmer to choose between 16 kB of

shared memory and 48 kB of L1 cache, or vice versa. The 48 kB L1 cache setting was chosen for the final

implementation, as no shared memory was used. This clearly improved performance compared to the

alternative setting.

5.3.5 Optimization strategies - CPU

On the CPU, choosing a significantly higher value for the number of threads (and) per variable or

check node update iteration than the number of logical cores in the test setup improved performance

significantly. On the test system, was found to be a good value, although only 8 logical cores

were present. It was also found important to process the 8 groups of 16 codewords for a particular row or

column of before processing another row/column, in order to improve cache utilization. Bit twiddling

operations played an even more important role on the CPU than on the GPU, due to the fact that, for

 Deliverable D2.2

ENGINES Page 45

example, there is no 8-bit integer multiplication instruction in SSE.

It is worth noting that while the intermediate result was expanded to a 16-bit integer in the variable node

update on the GPU, precision was kept at 8-bit throughout the operation on the CPU. Expanding the

intermediate values in an SSE-based implementation would have required many extra operations, sacrificing

performance. This solution leads to a somewhat less precise CPU decoder. In section 5.4.3, the error

correction performances of the GPU and CPU implementations are compared.

5.4 Performance

In this section, performance figures for both the CUDA-based and SSE SIMD-based LDPC decoders

presented in section 5.3 are presented, both in terms of throughput and error correction performance. It is

shown that the GPU implementation achieved throughputs required by the DVB-T2 standard with acceptable

error correction performance.

5.4.1 Throughput Measurements

The system described in section 5.2 was used for benchmarking the two min-sum LDPC decoders. Decoder

throughput was measured by timing the decoding procedure for 128 codewords processed in parallel, and

dividing the codeword length used (16200 bits for short code length, and 64800 bits for long code) times 128

by the time consumed. Thus, the throughput measure does not give the actual useful bitrate, but rather the

bitrate including parity data. To gain an approximate useful bitrate, the throughput figure must be multiplied

by the code rate. The decoder was benchmarked for both the short and long codeword lengths supported by

the DVB-T2 standard. Moreover, three different code rates were measured: 1/2, 3/4, and 5/6.

For the GPU implementation, the time measured included copying LLR values to the GPU, running a

message initialization kernel, running the variable node and check node update kernels for as many iterations

as desired before running the variable node update kernel including hard decision, and finally copying the

hard decisions back to host memory. Timing the CPU version included the same steps, except transferring

data to and from the GPU, which is not necessary in that case. In these benchmarks, checking whether we

had actually arrived at a valid codeword was not included. This task was instead handled by the BCH

decoder. If desired, we can check the validity of a codeword at a throughput penalty (penalty depending on

how often we check for validity). This may for example be done together with hard decision in order to be

able to terminate the decoder early upon successful recovery of all 128 codewords. In this case, however, we

specify a set number of iterations to run before one final hard decision. Note that the and structures

only need to be transferred to the GPU at decoder initialization (i.e. when LDPC code parameters change),

and that this time is thus not included in the measured time.

The measured throughputs of the GPU implementation are presented in Table 7 for long code, and in Table 8

for short code configurations. The corresponding throughput figures for the CPU implementation are

presented in Table 9 and Table 10. 10 batches of 128 codewords were decoded and the average time as well

as the maximum time for decoding a batch was recorded. These times were used to calculate the average

throughput as well as a minimum throughput (shown within parentheses in the tables) for each configuration.

 Deliverable D2.2

ENGINES Page 46

Table 7: GPU decoder average throughput in Mbps (Megabits per second), long code (). Minimum throughput in

parentheses.

Table 8: GPU decoder average throughput in Mbps, short code (). Minimum throughput in parentheses.

Table 9: CPU decoder average throughput in Mbps, long code (). Minimum throughput in parentheses.

Table 10: CPU decoder average throughput in Mbps, short code (). Minimum throughput in parentheses.

5.4.2 Results discussion

Annex C of the DVB-T2 standard assumes that received cells can be read from a deinterleaver buffer at

 OFDM (orthogonal frequency-division multiplexing) cells per second. At the highest modulation

mode supported by DVB-T2, 256-QAM, we can represent 8 bits per cell. This means that the LDPC decoder

should be able to perform at a bitrate of at least 60.8 Mbps (Megabits per second). As seen from the results,

the proposed GPU implementation is able to meet this realtime constraint even while performing 50

iterations.

 Deliverable D2.2

ENGINES Page 47

DVB-S2 and DVB-C2 use the same codeword lengths as DVB-T2, though they specify partly different sets

of code rates to suite their application domains. DVB-C2 may require processing up to cells per

second, which, coupled with a maximum modulation mode of 4096-QAM, gives us 90 Mbps maximum

required throughput. DVB-S2 also may require about 90 Mbps maximum throughput [44]. By interpolation

of the values in Table 7, it seems that the throughput requirements of these standards could be met at up to

roughly 35 iterations.

From Table 9 and Table 10 we see the throughputs of the CPU decoder at 20, 30, and 50 iterations. We can

see that the CPU implementation generally performs at slightly higher than 25% of the throughput of the

GPU implementation. As the throughput increases quite linearly with a decreasing maximum number of

iterations, we can derive that about 12 iterations should give us the required maximum bitrate of the DVB-T2

standard (60.8 Mbps). Indeed simulations at the slowest setting, 5/6-rate long code, revealed that at 12

iterations, 63.7 Mbps throughput was achieved with the CPU. This low amount of iterations would have a

significant negative impact on error correction performance, which is demonstrated in section 5.4.3.

It should be noted that the throughput of the CPU implementation is the throughput when the CPU is

completely dedicated to the task of decoding LDPC codewords. In a single processor system running a

software defined receiver, this would not be the case. The CPU capacity would in that case need to be shared

among all the signal processing blocks in the receiver chain (in addition to tasks such as video and audio

decoding). In this respect, the GPU implementation yields an advantage in addition to higher throughput. If

the GPU is assigned the task of LDPC decoding, the CPU is free to perform other tasks.

Figure 27 shows throughput of the CPU implementation (1/2-rate long code, 20 iterations) as a function of

varying the amount of threads (and) when different numbers of cores are available to the decoder. It

should be noted that a core in Figure 27 refers to a physical core, which consists of two logical cores, due to

the presence of Intel Hyper-Threading technology. The Intel Turbo Boost feature, which allows a core to run

at a higher than default clock frequency when other cores are idle, was disabled during this measurement.

The speedup factors when utilizing two, three, and four physical cores with the optimal amount of threads

are 1.9, 2.6, and 3.1, respectively. Varying the amount of cores used on the GPU is, to the authors'

knowledge, not possible, and a similar scalability study was thus not performed on the GPU.

 Deliverable D2.2

ENGINES Page 48

Figure 27: CPU decoder throughput with 1/2-rate long code at 20 iterations as a function of the number of threads (and

). Different curves for 1 to 4 cores available to the decoder.

5.4.3 Error Correction Performance

Many dedicated hardware LDPC decoders use a precision of 8 bits or less for messages, and should thus

have similar or worse error correction performance compared to the proposed implementations. Within the

simulation framework used for testing the decoder, however, high-precision implementations of LDPC

decoders using both the sum-product algorithm (SPA), as well as the min-sum algorithm, were available.

These implementations were written for a standard x86-based CPU, and used 32-bit floating point message

representation.

Simulations of DVB-T2 transmissions using both high-precision CPU-based implementations as well as the

proposed GPU-based and CPU-based implementations, were performed in order to determine the cost of the

lower precision of message representations as well as the use of min-sum over SPA in terms of decoder error

correction capability.

Figure 28 and Figure 29 shows simulation results for a 16-QAM configuration at the code rates 1/2 and 5/6,

respectively, of the long code. The simulations were performed on signal-to-noise ratio (SNR) levels 0.1 dB

apart.

When simulating using the high-precision CPU implementations, 2000 codewords were simulated for each

SNR level. As the proposed implementations were orders of magnitude faster, 16000 codewords were

simulated per SNR level for these implementations, in order to be able to detect possible low error floors.

The average bit error rate (BER) was calculated by comparing the sent and decoded data. A channel model

simulating an AWGN (additive white Gaussian noise) channel was used. The maximum number of LDPC

decoder iterations allowed was set to 50.

 Deliverable D2.2

ENGINES Page 49

Figure 29: Simulation results for 16-QAM long code 5/6-rate.

As can be seen in Figure 28 and Figure 29, the proposed lower precision GPU and CPU implementations

perform very close (within 0.1 dB) to the high-precision min-sum CPU implementation on the AWGN

channel. The simulations clearly indicate that the impact of using the simplified min-sum algorithm as

opposed to the superior SPA algorithm is much greater than the choice of message precision. The error

correction performance advantage of the SPA algorithm also remains relatively small (please note the fine

scale of the x-axes in the figures), however, with slightly less than a 1 dB advantage for 1/2-rate and roughly

0.5 dB for 5/6-rate at a BER level of .

As mentioned in section 5.4.2, the CPU implementation could perform only 12 iterations in order to reach

the maximum required throughput of DVB-T2, while the GPU implementation manages to perform in excess

of 50 iterations under the same constraints. In Figure 30, it is demonstrated how varying the amount of

maximum iterations performed by the proposed CPU min-sum decoder implementation impacts error

correction performance. The figure shows simulation results for a 16-QAM configuration, with 1/2-rate long

code over an AWGN channel. All SNR levels were simulated over 2048 codewords. Figure 30 reveals that

12 iterations of the min-sum decoder does not yield very good error correction performance. The difference

between 12 and 50 iterations is roughly 0.7 dB at a BER level of , which is perhaps not a great amount.

At 12 iterations, however, the steepness of the “waterfall” region of the SNR-BER curve is notably worse

than at 50 iterations, which is undesirable. Figure 30 also shows that 30 iterations does not give significantly

worse results than 50 iterations.

Figure 28: Simulation results for 16-QAM long code 1/2-

rate configuration when using the proposed CUDA GPU

and SSE SIMD CPU implementations, as well as high

precision (HP) CPU implementations of SPA and min-sum

algorithms.

 Deliverable D2.2

ENGINES Page 50

Figure 30: Simulation results for 16-QAM 1/2-rate long code configuration when varying the maximum number of LDPC

decoder iterations. Simulations were performed using the proposed SIMD CPU implementation.

5.5 Conclusion

In this report, two implementations of LDPC decoders optimized for decoding the long codewords specified

by the next generation digital television broadcasting standards DVB-T2, DVB-S2, and DVB-C2 have been

presented. The GPU implementation is a highly parallel decoder optimized for a modern GPU architecture.

The throughputs required by these standards at high numbers of iterations were reached, giving good error

correction performance. It was also shown that a modern multi-core SIMD-enabled CPU is capable of quite

high throughputs, though perhaps not quite enough for the most demanding configurations of the DVB

standards.

In [33], it was shown that besides the LD C decoder, the AM constellation demapper converting

received constellation points in the complex plane to LLR values is one of the most computationally

complex blocks in a DVB-T2 receiver chain. As the demapper produces the input to the LDPC decoder (a bit

deinterleaver does however separate the two signal processing blocks), a good next step would be to perform

both the demapping and LDPC decoding on the GPU, further reducing the main CPU load.

6 MIMO DETECTION

6.1 Receiver structure

At the receiver side, the signal received after propagation through the MIMO equivalent channel H expresses

simply as:

 Deliverable D2.2

ENGINES Page 51

where y is the matrix of the received symbols of size . The corresponding generic receiver is depicted

in Figure 31. The multi-antenna equalizer takes symbols per receive antenna and their corresponding

channel estimates, i.e. sub-channel estimates, in order to produce the estimate ̂ of the transmitted

symbol .

Nr

MIMO equalizer

MIMO channel estimator

Demapper

Tyy ,11,1 ,,

TNN rr
yy ,1, ,,

Qss ˆ,,ˆ1

tr NNij hhh ˆ,,ˆ,,ˆ
1,1

Figure 31 Generic multi-antenna receiver structure.

As detailed later on, different decoding strategies can be driven by the equalizer, depending on the type of

the ST coding scheme and on complexity considerations. For example, orthogonal STBC (OSTBC) schemes

yield simple maximum likelihood (ML) receiver structures, while non-orthogonal STBC need more complex

decoding algorithms, either derivated from the ML approach or based on iterative interference cancellation

structures. In any case, note that in SISO mode, the multi-antenna equalizer block acts exactly as a channel

equalizer.

6.2 Complexity Analysis on Maximum-Likelihood MIMO Decoding

Although optimal bit-error performance is obtained with a maximum-likelihood decoder (MLD) it has the

disadvantage that the complexity grows exponentially with the number of transmit antennas. Although the

number of transmit antennas specified for MIMO in DVB-NGH standard is relatively small, complexity

might still be an issue for low-cost portable devices, and it is worth investing in new techniques to reduce its

complexity.

The first step in reducing the complexity of the decoder is to simplify the log-likelihood ratio (LLR)

calculation for soft-decision by using the max-log approximation on the LLR. It was shown that the

performance penalty is very small, less than 0.05 dB, for a 2-by-2 16QAM system in the context of the DVB

NGH channel model. This is significantly lower than a typical hardware implementation margin.

Secondly, there has been significant research in reducing the complexity of MLD by first decomposing the

MIMO channel matrix using the QR decomposition H = QR, which results in Q, an orthonormal matrix, and

R, an upper triangular matrix with real diagonal values. The QR-decomposition can form the basis of

reduced-complexity decoding as follows:

 Deliverable D2.2

ENGINES Page 52

It is well known that finding the ML solution is equivalent to solving:

2

minargˆ Hsxs
s

D

ML , (1)

where D is the search-space, x the received vector, H is the channel matrix and s is the transmitted vector.

The QR-based decoder will first decompose H into Q and R, hence the ML solution will now be solving:

2

minargˆ Rsys
s

D

ML , (2)

where xQy
H and the squared norm remains unaltered.

An indication of the complexity can be done by calculating the number of multiplication and addition

operations required by the decoders for the max-log LLR calculation:

 MLD (2-by-2 MIMO)

o (13 multipliers & 15 adders) x 2
b1

o (13 multipliers & 15 adders) x 2
b2

 QR-based MLD (2-by-2 MIMO) – excluding QR decomposition

o (5 multipliers & 6 adders) x 2
b1

o (11 multipliers & 11 adders) x 2
b2

o 16 multipliers & 12 adders

The b1 and b2 corresponds to the number of bits in the QAM constellation for the first and second symbol

respectively. The number of multipliers/adders required by the QR decomposition depends on

implementation and known to be small for a 2-by-2 matrix. Table 11 illustrates three possible QAM

combinations for the 2-by-2 MIMO system.

Table 11: Resource usage for different QAM combination. Calculations do not include resources needed for QR

decomposition for the QR-based MLD.

 Resource

Decoder

16QAM / 16QAM 16QAM / 64QAM 64QAM / 64QAM

Multipliers Adders Multipliers Adders Multipliers Adders

MLD 416 480 1040 1200 1664 1920

QR-based MLD 272 284 512 572 1040 1100

Savings 144 196 528 628 624 820

This shows that the QR-based MLD saves around 35%-51% multipliers and 41%-52% adders on first

inspection before taking into account the resources required for QR decomposition (for the QR-based MLD).

It is worth noting that the QR decomposition is only done once for every received vector.

 Deliverable D2.2

ENGINES Page 53

The sphere decoding technique is another way to reduce the complexity of the decoder. The sphere decoders

can be classified as a QR-based decoder and it has been known by different names throughout the research

community because of its slight variant. The MLD decoding structure can be illustrated in a tree diagram as

shown in Figure 32 and the search space is represented by the points at the lowest level (Layer 1).

Figure 32: MIMO 2x2 tree diagram (16QAM, 16QAM).

The hard-decision MLD searches over the entire search space for the most probably transmitted symbol

based on the received vector while the sphere decoder searches over a fraction of the search space by using

an iterative process and boundary conditions. The sphere decoding concept can also be extended to soft-

decision and it has become a good choice for MIMO decoding. However, there are still challenges in

implementing sphere decoder in VLSI because of practical tradeoffs and general assumptions.

As the Space-Time codewords can be seen as a subset points of certain “lattice”, the ML decoding can be

recognized as searching the nearest lattice point to a given (received) point. A visual illustration of the ML

decoding is given in Figure 33. As shown in the figure, the number of lattice points which are found inside a

sphere is significantly smaller than the number of all possible candidates. Meanwhile, the nearest lattice

point within the sphere centered by the given point is also the nearest point among all candidates. To avoid

the exhaustive search of all combinations of the Space-Time codewords, the sphere decoding searches only

among the points of the lattice which are located inside the sphere. This ensures only a few lattice points

with more “potential” are involved in the searching processing. Therefore, by carefully selecting the radius

of the sphere, the ML solution can be found by sphere decoding with much less searching complexity.

Extensive description of the sphere decoder is suggested to refer to [45].

Figure 33 Principle of the sphere decoder.

It is worth mentioning that basic linear decoders such as zero-forcing and MMSE equalisers are simple and

easy to implement in hardware but produce sub-optimal bit-error performances. The complexity of such

decoders is not determined by the size of the QAM modulation like in MLD and the resource usage is just a

Layer 1

Layer 2

R

 Deliverable D2.2

ENGINES Page 54

very small fraction compared to MLD.

6.3 Iterative Space-Time decoding

In the case of OSTBC (Orthogonal Space-Time Block Code), the data stream is divided into several

orthogonal subchannels. Hence the optimal receiver for OSTBC is made of a concatenation of ST decoder

and channel decoder modules. In NO-STBC schemes, there is an inter-antenna interference (IAI) at the

receiving side. The optimal receiver in this case is based on joint ST and channel decoding operations.

However such receiver is extremely complex to implement and requires large memory to store the different

points of the trellis. Thus the sub-optimal solution proposed here consists of an iterative receiver where the

ST detector and channel decoder exchange extrinsic information in an iterative way until the algorithm

converges. The iterative detection and decoding exploits the error correction capabilities of the channel code

to provide improved performance. This is achieved by iteratively passing soft a priori information between

the detector and the soft-input soft-output decoder. A more detailed description of this iterative receiver is

given in Figure 34.

Nr

PIC detector
Soft-output

Demapper

)(ˆ is
Deinterleaver

Soft-in-soft-

output

Decoder

Soft Gray

Mapper
Interleaver

)1(ˆ is

Decoded

bits

Figure 34 Iterative ST receiver structure.

6.4 Iterative MIMO decoding for DVB-NGH

DVB-NGH (Next Generation Handheld) is the next generation of mobile TV broadcasting standard

developed by the DVB project. It is the mobile evolution of DVB-T2 (Terrestrial 2nd Generation) 6.4 and its

deployment is motivated by the continuous grow of mobile multimedia services to handheld devices such

tablets and smart-phones [47]. The main objective of DVB-NGH is to increase the coverage area and system

capacity outperforming the existing mobile broadcasting standards DVB-H (Handheld) and DVB-SH

(Satellite services to Handheld devices). DVB-T2 and therefore DVB-NGH, introduces the concept of

Physical Layer Pipe (PLP) in order to support a per service configuration of transmission parameters,

including modulation, coding and time interleaving. The utilization of multiple PLPs allows for the provision

of services targeting different user cases, i.e. fixed, portable and mobile, in the same frequency channel. The

main new additional characteristics of DVB-NGH compared to DVB-T2 are: use of SVC (Scalable Video

Coding) for efficient support for heterogeneous receiving devices and varying network conditions, TFS

 Deliverable D2.2

ENGINES Page 55

(Time Frequency Slicing) for increased capacity and/or coverage area, efficient time interleaving to exploit

time diversity, RoHC (Robust Header Compression) to reduce the overhead due to signaling and

encapsulation, additional satellite component for increased coverage area, improved signaling robustness

compared to DVB-T2, efficient implementation of local services within SFN (Single Frequency Networks)

and finally, implementation of multi-antenna techniques (MIMO) for increased coverage area and/or system

capacity.

The utilization of multi antenna techniques at both sides of the transmission link (MIMO) is a key

technology that allows for significant increased system capacity and network coverage area. It is already

included in fourth-generation (4G) cellular communication systems, e.g. Worldwide Interoperability for

Microwave Access (WiMAX) and 3GPP´s Long-Term Evolution (LTE), and internet wireless networks, e.g.

Wireless Local Area Networks (WLAN), to cope with the increasing demand of high data rate services.

DVB-NGH is the first world´s broadcast system to include MIMO technology.

The gains achieved with MIMO can be further increased with the combination of iterative detection where

the MIMO demapper and channel decoder exchange extrinsic information in an iterative fashion providing

large gains. One big advantage of iterative demapping is that it only affects the receiver side and therefore no

modification is required in standards and transmitters. However, iterative decoding significantly increases

the receiver complexity, making it less suited for mobile devices. To reduce the computational complexity,

numerous suboptimal MIMO receivers have been proposed, e.g. linear zero-forcing (ZF) and minimum mean

square error (MMSE) receivers.

In this section we study the gains provided by MIMO in combination with iterative decoding (MIMO ID) in

vehicular environments. The performance of optimal MIMO ID is compared with suboptimal MIMO ID

based on MMSE filtering with a priori inputs. First the fundamentals of MIMO demodulation and

complexity are described. The iterative decoding process for both, optimal decoding and suboptimal

decoding based on MMSE with a priori inputs are presented. Then, the simulation setup (i.e. channel model

employed and system parameters) is given and the physical layer simulation results discussed.

6.4.1 MIMO demodulation and complexity

The task of the demapper is to provide LLRs (Log Likelihood Ratios) to the channel decoder with reliability

information of the transmitted code bits. The optimum soft MAP (Maximum a posteriori) demapper

computes the LLR of the transmitted bit cl with the received vector y and the channel estimates H with the

following expression

0

1

2

2

2

2

exp

exp

ln
)|0(

)|1(
log

l

l

x w

x w

l

l
l

cf

cf

Hxy

Hxy

Hy,

Hy,
, (1)

where σw
2
 denotes the noise variance and b

l denotes the set of transmit vectors for which cl equals b {0,

1}. The computational complexity grows exponentially with the number of transmit antennas, being

prohibitive even for small number of antennas. In the literature there are a vast number of algorithms and

approximations to reduce the complexity. Max-log demapper applies the max-log approximation

 Deliverable D2.2

ENGINES Page 56

m

m

m

m aa max)exp(log , (2)

transforming (1) into the next formula

22

2 10
minmin

1~
HxyHxy

ll xx
w

l

, (3)

with a small degradation penalty [49].

Max-log approximation eases receiver implementation due to logarithm and exponential computations are

changed by minimum distances calculations. Still the complexity grows exponentially with the number of

transmit antennas.

Nonlinear techniques like sphere decoding further reduce the complexity finding the most likely transmitted

symbol from a subset of the original ML search. Significant reduction of the receiver complexity can be

obtained with linear techniques like zero forcing (ZF) and minimum mean squared error (MMSE). They

apply a linear equalizer to the receive data which cancels the multi-stream interference transforming the

MIMO detection problem into several independent SISO problems. Zero forcing eliminates the multi-stream

interference but enhances the noise degrading the performance. MMSE equalizer trades-off interference

cancellation and noise enhancement. The complexity of linear equalizer demappers scales polynomically

with the number of transit antennas, significantly lower than max-log demapping.

6.4.2 Optimal and Suboptimal Iterative detection

Exploit of time, frequency and space diversity in combination with LDPC codes in BICM systems achieve

spectral efficiencies very close to Shannon´s capacity limit theorem. Iterative detection reduces this gap even

more. Extrinsic information is exchanged between demapper and channel decoder in an iterative manner

[50]. The demapper computes extrinsic LLRs with the received vector of symbols and a priori information

coming from the channel decoder. The computed extrinsic LLRs are de-interleaved to become a priori

information to be fed to the channel decoder. After decoding operation the improved LLRs are used to

extract the extrinsic information, which is interleaved and fed to the demapper closing the iteration loop as it

is illustrated in Figure 35. Each iteration improves the performance of the decoded stream until saturation

point. After certain desired quality is achieved, the LLR decoder outputs are used for hard-decisions

obtaining the final decoded bit stream.

 Deliverable D2.2

ENGINES Page 57

Figure 35: Iterative exchange of extrinsic information between demapper and channel decoder.

Iterative detection provides large gains at cost of higher computational complexity. The complexity increases

linearly with the number of outer iterations due to the repetition of MIMO demapping and channel decoder

operations, making in some cases inaccessible its real implementation. Design of number of iterations

performed at the receiver (i.e. iterations of LDPC decoder and number of outer iterations) for efficient

exchange of extrinsic information is out of the scope of this paper.

As explained previously, optimal MAP demapping requires high complexity due to it computes comparisons

with all possible received signals. Lower complexity sub-optimal receivers based on linear equalization

include ZF or MMSE. Linear equalizers reduce multi-stream interference transforming the joint MIMO

demapping problem into several independent SISO problems. Therefore the receiver complexity is

significantly reduced scaling polynomically with the number of transmit antennas in comparison with the

exponential grow of the reference max-log MIMO demapper.

Iterative MIMO demapping can exploit the complexity reductions offered by linear equalization but

exploiting the gains provided by iterative decoding. The estimates of the MMSE equalization can be

improved with the information coming from the channel decoder, i.e. MMSE equalization with a priori

information. This approach has been proposed for communication systems that send data over channels that

suffer from ISI (Inter Symbols Interference) and require equalization [51] - [52], and in a multiuser scenario

for CDMA systems [53]. MMSE linear equalizer for non-iterative schemes is illustrated in expression (4)

where x~ is the estimated vector of transmitted symbols after linear equalization, y is the vector of received

symbols, H is the MIMO channel matrix, σw
2
 is the AWGN noise variance at the receiver and I is the identity

matrix

 yHIHHx
H12H~

 wσ . (4)

Expression (4) can be generalized to take into account a priori knowledge from the channel decoder which is

illustrated in expression (5)

)(),(Cov),(Cov~ 1 yyyyyxxx , (5)

where

 Deliverable D2.2

ENGINES Page 58

 H),(Cov),(Cov Hxxyx , (6)

 IHxxHyy
2H),(Cov),(Cov wσ , (7)

 xHy . (8)

The mean and variance of the transmitted vector x is computed with the following expressions

i

ii xP)(x , (9)

i

ii xPx,x)()()Cov(2
x , (10)

where the extrinsic bit probabilities are calculated from the extrinsic LLRs with the following relationships

)(

1

1
)0(

bLLREXTe
bP

 , (11)

)0(1)1(bPbP . (12)

6.4.3 Simulation setup

In this section we describe the selected system parameters and mobile channel model used in the simulations

for performance evaluation of optimal and suboptimal iterative DVB-NGH MIMO receivers.

6.4.3.1 DVB-NGH channel model

The MIMO channel model used during the standardization process was developed from a sounding

campaign that took place in Helsinki in June 2010 [54]. The main objective was to obtain a 2x2 MIMO

channel model (Figure 36) in the UHF band representative of cross-polar MIMO propagation in order to

evaluate the performance obtained by multiple antenna techniques in realistic scenarios. This measurement

campaign was the first one with cross-polar antenna configuration in the UHF frequency range. In ideal

conditions the MIMO channel is rich in scattering and all the spatial paths have uncorrelated fading signals

leading to maximum channel capacity. However, in practice, fading between spatial paths experiments

correlation due to insufficient scattering. Moreover in situations where the transmitter and the receiver have

LOS (Line Of Sight) component, the fading is modeled by a Ricean distribution with a sum of a time-

invariant fading component and a time-variant fading component. The power of both components is related

by the Ricean K-factor. Spatial fading correlation and LOS component diminish the MIMO capacity [48]

and both effects are included in the NGH MIMO channel model.

A wide range of reception conditions are included in the set of DVB-NGH channel models. Indoor and

outdoor portable scenario with typical receiver velocities of 0 km/h and 3 km/h. Vehicular scenario with

receiver velocities of 60 km/h and 350 km/h. Finally, SFN (Single Frequency Network) scenarios are

 Deliverable D2.2

ENGINES Page 59

included with the reception from two or four transmitter sites in a SFN network.

Figure 36: 2x2 MIMO system.

Vehicular scenario with receiver velocity of 60 km/h is the channel model used to evaluate the performance

of the iterative MIMO receivers. Figure 37 illustrates the 8 taps PDP (Power Delay Profile) and the Doppler

spectra characteristics. From both plots it can be seen the strong LOS component included in the model.

Figure 37: Power delay profile and Doppler spread spectrum for DVB-NGH portable outdoor channel model – Doppler

spread of 400 Hz illustrated for visualization issue.

6.4.3.2 Simulation parameters

Table 12 summarizes the system parameters selected for the performance evaluation simulations.

0 0.2 0.4 0.6 0.8

x 10
-5

0

0.2

0.4

0.6

0.8

 [s]

P
D

P

-400 -200 0 200 400
0

0.2

0.4

0.6

0.8

fd [Hz]

N
o
rm

al
iz

ed
 A

m
p

li
tu

d
e

 Deliverable D2.2

ENGINES Page 60

Table 12: System parameters

DVB-NGH simulation platform

FFT size 4096 carriers

Guard Interval 1/4

Memory size 260 Kcells

LDPC size 16200

Constellation order 8 bpcu (16QAM+16QAM)

Code Rates 1/3, 8/15 and 11/15

Num. iterations non iterative

receiver
1x50

Num. iterations iterative

receiver
25x2

QoS Frame Error Rate after BCH 10
-2

The simulated system employs a FFT size of 4096 carriers and guard interval of 1/4 to trade off network cell

area and resilience against Doppler spread. DVB-NGH uses half the amount of memory allowed for DVB-

T2, i.e., 260 Kcells, to due to more restrictive memory requirements for handheld devices. The LDPC size is

16200 bits, to reduce power consumption and complexity in comparison with 64800 bits LDPC code word

length. The constellation order selected is 8 bpcu (bits per cell unit) which implies a 16QAM constellation in

each transmit antenna. We have selected the lowest, medium and highest code rate available for MIMO

transmissions in DVB-NGH. The QoS (Quality of Service) selected is 1% of FER (Frame Error Rate) after

BCH code.

The selection on the number of iterations performed by the receiver has a crucial impact in the performance

and complexity.

Non-iterative receiver – 1x50: In this case no iterative decoding is implemented, i.e. there are zero outer

iterations; the LDPC decoder performs 50 inner iterations.

Iterative receiver – 25x2: In this case, the number of outer iterations is limited to 25. In each outer iteration,

the LDPC decoder performs 2 inner iterations. We note that the LDPC decoder complexity is the same in

both cases since 50 inner iterations are performed in total.

6.4.4 Results

In the next section, simulation results are provided to analyze the performance of optimal and suboptimal

iterative DVB-NGH MIMO receivers. We provide a performance comparison between MMSE demapper

with a priori inputs and max-log demapper for both single shot and iterative receivers (MMSE non-ID,

MMSE ID, max-log non-ID, max-log ID).

Figure 38, illustrates performance simulation results for code rate 1/3. For single shot receivers MMSE

 Deliverable D2.2

ENGINES Page 61

demapper outperforms the max-log demapper by 0.15 dB. For the iterative receiver, max-log demapper

outperforms MMSE by 0.2 dB. In both cases the performance of MMSE demapper is very similar to max-

log, however complexity is significantly reduced. The iterative gain of MMSE ID demapper compared to

max-log non-ID demapper is 0.8 dB.

Figure 38: MMSE and max-log demapper performance comparison for single shot and iterative receivers using 8

bpcu and code rate 1/3 in vehicular DVB-NGH channel model with 60 km/h

Figure 39, shows results for code rate 8/15. In this case, MMSE demapper losses performance against max-

log demapper for both cases, single shot and iterative receivers. For the former, loss is approximately by 0.4

dB and for the latter the performance loss is 0.5 dB. Still, the MMSE ID demapper outperforms max-log

non-ID by 0.6 dB.

7 8 9 10 11 12
10

-2

10
-1

10
0

CNR [dB]

F
ra

m
e
 E

rr
o
r

R
a

te

max-log 1x50

MMSE 1x50

max-log 25x2

MMSE 25x2

 Deliverable D2.2

ENGINES Page 62

Figure 39: MMSE and max-log demapper performance comparison for single shot and iterative receivers using 8

bpcu and code rate 8/15 in vehicular DVB-NGH channel model with 60 km/h

Concluding the performance comparison between demapper options, Figure 40 shows results for code rate

11/15. In this case the difference between MMSE demapper and max-log increases. For the non-iterative

case, MMSE non-ID demapper losses 1.2 dB against max-log non-ID and for the iterative case the loss of

MMSE ID demapper compared to max-log ID is 1.9 dB but having similar performance to max-log non-ID.

Figure 40: MMSE and max-log demapper performance comparison for single shot and iterative receivers using 8

bpcu and code rate 11/15 in vehicular DVB-NGH channel model with 60 km/h

11 12 13 14 15 16
10

-2

10
-1

10
0

CNR [dB]

F
ra

m
e
 E

rr
o
r

R
a

te

max-log 1x50

MMSE 1x50

max-log 25x2

MMSE 25x2

14 15 16 17 18 19 20 21
10

-2

10
-1

10
0

CNR [dB]

F
ra

m
e
 E

rr
o
r

R
a

te

max-log 1x50

MMSE 1x50

max-log 25x2

MMSE 25x2

 Deliverable D2.2

ENGINES Page 63

The MMSE demapper is able to exploit the benefits of iterative detection but reducing the receiver

complexity significantly. For both, non-ID and ID receivers, soft MMSE demapper has similar performance

to max-log at low code rates, whereas at high rates MMSE demapper reduces its performance in comparison

to max-log. These results are consistent with [55]. It is worth mentioning that the MMSE ID demapper

outperforms or gives same performance than max-log non-ID demapper.

Next, we analyze the evolution of the FER with the number of outer iterations (feedback from LDPC

decoder to MIMO demapper) for the two demappers under study. Figure 41 shows this evolution for code

rate 1/3. The convergence of the error rate depends on the CNR available at the decoder input. For low CNR,

increasing the number of iterations does not provide significant gain, e.g. 7 dB of Figure 41. On the other

hand for medium or high CNR values (e.g. 8.5 dB and 9.5 dB of Figure 41), every outer iteration reduces the

FER until saturation point, where feeding more information back to the demapper does not significantly

improve the performance. This situation holds for both demappers and also for code rate 8/15 (Figure 42).

The number of outer iterations performed at the receiver is a flexible parameter which provides a trade-off

between performance and complexity.

Figure 41: FER evolution with the number of outer iterations with MMSE (left) and max-log (right) demappers for 8 bpcu

and code rate 1/3.

0 5 10 15 20 25
10

-2

10
-1

10
0

Number outer iterations

F
ra

m
e
 E

rr
o
r

R
a

te

CNR 7.0 dB

CNR 8.5dB

CNR 9.5 dB

0 5 10 15 20 25
10

-2

10
-1

10
0

Number outer iterations

F
ra

m
e
 E

rr
o
r

R
a

te

CNR 7.0 dB

CNR 8.5 dB

CNR 9.5 dB

0 5 10 15 20 25
10

-2

10
-1

10
0

Number outer iterations

F
ra

m
e
 E

rr
o
r

R
a

te

CNR 11.0 dB

CNR 12.5 dB

CNR 13.5 dB

0 5 10 15 20 25
10

-2

10
-1

10
0

Number outer iterations

F
ra

m
e
 E

rr
o
r

R
a

te

CNR 11.0 dB

CNR 12.5 dB

CNR 13.5 dB

 Deliverable D2.2

ENGINES Page 64

Figure 42: FER evolution with the number of outer iterations with MMSE (left) and max-log (right) demappers for 8 bpcu

and code rate 8/15.

6.4.5 Conclusions

Iterative demapping provides significant gains for DVB-NGH MIMO receivers with max-log demapping.

Simulation results under vehicular NGH channel model with 60 km/h show gains up to 2 dB. However, the

implementation of iterative MIMO demapping requires a high computational complexity which scales

exponentially with the number of transmit antennas and linearly with the number of outer iterations.

Sub-optimal soft MMSE demapper with a priori inputs is able to exploit the benefits of iterative demapping

providing gains up to 1.2 dB under simulated vehicular scenario. Moreover, it significantly reduces the

receiver complexity scaling polynomically with the number of transmit antennas and linearly with the

number of outer iterations. Simulation results show for low code rates similar performance between soft

MMSE demapper and max-log demapper for both, non-iterative and iterative receivers. At medium and high

code rates MMSE demapper losses performance in comparison to max-log demapper. However iterative soft

MMSE demapper provides same or improved signal quality as compared to non-iterative max-log demapper

for all simulated code rates.

7 SUMMARY
The material presented here was dedicated to issues related to DVB-NGH receiver algorithms and

implementation issues. A generic channel equalization technique for OFDM based systems in time variant

channels was presented. A general classification for channels in terms of their time variability was presented.

Besides, the equalization methodology reliability and the channel classification validity were proved in both

the TU-6 and MR channels.

An efficient shuffled iterative receiver for the second generation of the terrestrial digital video broadcasting

standard DVB-T2 was introduced. A simplified detection algorithm was presented, which has the merit of

being suitable for hardware implementation of a Space-Time Code (STC). Architecture complexity and

measured performance validate the high potential of iterative receiver as both a practical and competitive

solution for the DVB-T2 standard.

Further, DVB-T2 performance in time varying environments was presented. The performance of the standard

is simulated for both single and diversity 2 reception. Since DVB-T2 contains a huge number of possible

configurations, focus is mainly given to two configurations: UK mode, and Germany-like candidate mode.

Highly parallel implementations of LDPC decoders optimized for decoding the long codewords specified by

the second generation of digital television broadcasting standards: i.e. DVB-T2, DVB-S2, and DVB-C2 were

presented. These implementations are optimized for modern GPUs (graphics processing units) and general

purpose CPUs (central processing units). High-end GPUs and CPUs are quite affordable compared to

capable FPGAs, and this hardware can be found in the majority of recent personal home computers.

Finally, studies on MIMO detection in the receiver were presented. Both complexity of the MIMO detection

and performance of iterative MIMO detection were studied.

 Deliverable D2.2

ENGINES Page 65

8 REFERENCES

[1] J. Cimini, L., “Analysis and simulation of a digital mobile channel using orthogonal frequency division

multiplexing,” Communications, IEEE Transactions on, vol. 33, no. 7, pp. 665 – 675, Jul. 1985.

[2] S. Coleri, M. Ergen, A. uri, and A. Bahai, “Channel estimation techniques based on pilot arrangement in

OFDM systems,” Broadcasting, IEEE Transactions on, vol. 48, no. 3, pp. 223 – 229, Sep. 2002.

[3] M.-H. Hsieh and C.-H. Wei, “Channel estimation for OFDM systems based on comb-type pilot

arrangement in frequency selective fading channels,” Consumer Electronics, IEEE Transactions on, vol.

44, no. 1, pp. 217 –225, Feb. 1998.

[4] W. G. Jeon, K. H. Chang, and Y. S. Cho, “An equalization technique for orthogonal frequency-division

multiplexing systems in time-variant multipath channels,” Communications, IEEE Transactions on, vol.

47, no. 1, pp. 27 –32, Jan. 1999.

[5] X. Wang and K. J. R. Liu, “An adaptive channel estimation algorithm using time-frequency polynomial

model for OFDM with fading multipath channels,” EURASI J. Appl. Signal rocess., vol. 2002, pp.

818–830, January 2002. [Online]. Available: http://portal.acm.org/citation.cfm?id=1283100.1283185

[6] Y. Mostofi and D. Cox, “ICI mitigation for pilot-aided OFDM mobile systems,” Wireless

Communications, IEEE Transactions on, vol. 4, no. 2, pp. 765 – 774, 2005.

[7] H. Hijazi and L. Ros, “OFDM high speed channel complex gains estimation using kalman filter and qr-

detector,” in Wireless Communication Systems. 2008. ISWCS ’08. IEEE International Symposium on,

2008, pp. 26 –30.

[8] . Bello, “Characterization of randomly time-variant linear channels,” Communications Systems, IEEE

Transactions on, vol. 11, no. 4, pp. 360–393, 1963.

[9] O. Edfors, M. Sandell, J. Van De Beek, S. Wilson, and . Borjesson, “Analysis of DFT-based channel

estimators for OFDM,” Wireless ersonal Communications, vol. 12, no. 1, pp. 55–70, 2000.

[10] W. Jakes, “Microwave Mobile Channels,” New York: Wiley, vol. 2, pp. 159–176, 1974.

[11] M. Failli, “Digital land mobile radio communications COST 207,” European Commission, EUR, vol.

12160.

[12] T. Celtic Wing, “project report (2006-12). Services to Wireless, Integrated, Nomadic, GPRS-UMTS &

TV handheld terminals. Hierarchical Modulation Issues. D4-Laboratory test results. Celtic Wing TV,

2006.”

[13] H. Hijazi and L. Ros, “Bayesian cramer-rao bound for OFDM rapidly time-varying channel complex

gains estimation,” in Global Telecommunications

[14] C. Abdel Nour and C. Douillard, “Improving BICM erformance of AM constellations for

broadcasting applications,” Int. Symp. on Turbo Codes and Iterative Techniques, Lausanne, Switzerland,

Sept. 2008, pp. 50 – 60.

[15] S. Sezginer and H. Sari, “Full-rate full-diversity 2×2 space-time codes

[16] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-antenna channel,” IEEE

Transactions on Communications, vol. 51, pp. 389 – 399, Mar. 2003.

[17] L. Vangelista, N. Benvenuto, S. Tomasin, C. Nokes, J. Stott, A. Filippi, M. Vlot, V. Mignone, and A.

Morello, “Key technologies for next generation terrestrial digital television standard DVB-T2,” IEEE

Communications Magazine, vol. 47, no. 10, pp. 146 –153, October 2009.

[18] J. Boutros and E. Viterbo, “Signal space diversity: a power- and bandwidth-efficient diversity technique

for the Rayleigh fading channel,” IEEE Transactions on Information Theory, vol. 44, no. 4, pp. 1453 –

1467, July 1998.

[19] DVB-T2, “Implementation guidelines for a second generation digital terrestrial television broadcasting

system (DVB-T2),” ETSI TR 102 831, v1.1.1, Oct. 2010.

 Deliverable D2.2

ENGINES Page 66

[20] M. Li, C. Nour, C. Jego, and C. Douillard, “Design of rotated AM mapper/demapper for the DVB-T2

standard,” IEEE Workshop on Signal Processing Systems, SiPS 2009, October 2009, pp. 18 – 23.

[21] M. Li, C. Nour, C. Jego, and C. Douillard, “Design and F GA prototyping of a bit-interleaved coded

modulation receiver for the DVB-T2 standard,” IEEE Workshop on Signal Processing Systems, SiPS

2010, Oct. 2010, pp. 162 – 167.

[22] D. Hocevar, “A reduced complexity decoder architecture via layered decoding of LD C codes,” IEEE

Workshop on Signal Processing Systems, SiPS 2004, Oct. 2004, pp. 107 – 112.

[23] J. Zhang and M. Fossorier, “Shuffled iterative decoding,” IEEE Transactions on Communications, vol.

53, no. 2, pp. 209 – 213, Feb. 2005.

[24] T. Yokokawa, M. Kan, S. Okada, and L. Sakai, “ arity and column twist bit interleaver for DVB-T2

LD C codes,” 5
th
 International Symposium on Turbo Codes and Related Topics, Sept. 2008, pp. 123 –

127.

[25] C. Marchand, J.-B. Dore, L. Conde-Canencia, and E. Boutillon, “Conflict resolution by matrix

reordering for DVB-T2 LD C decoders,” IEEE Global Communications Conference, GLOBECOM

2009, Dec. 2009, pp. 1 – 6.

[26] Frame structure channel coding and modulation for a second generation digital terrestrial television

broadcasting system (DVB-T2), ETSI EN 302 755 v.1.3.1, Apr. 2012.

[27] Microwave Mobile Communications, William C.Jakes, Wiley-Interscience.

[28] Antennas and Propagation for Wireless Communication Systems, S.R. Saunders John Wiley & Sons

Ltd.

[29] Digital Communication over fading Channels, Simon & Alouini, John Wiley & Sons, Ltd.

[30] “Analytical LCR & AFD for Diversity Techniques in Nakagami Fading Channels,” Iskander and

Mathiopoulos, IEEE Trans. on Com., vol.50, no 8, Aug. 2002.

[31] S. Grönroos, K. Nybom and J. Björkqvist, ”Efficient G U and C U-based LDPC decoders for long

codewords”, Analog Integrated Circuits and Signal rocessing, Springer, 2012.

DOI: 10.1007/s10470-012-9895-7

[32] R. Gallager, “Low-Density Parity-Check Codes”, Ph.D. Thesis, M.I.T., 1963.

[33] S. Grönroos, K. Nybom and J. Björkqvist, ”Complexity Analysis of Software Defined DVB-T2

 hysical Layer”, in roceedings of the SDR ‘10 Technical Conference and roduct Exposition,

Washington, D.C., 2010.

[34] NVIDIA, “CUDA C rogramming Guide v.4.0”, http://www.nvidia.com, 2011.

[35] D. MacKay, “Good error-correcting codes based on very sparse matrices”, in IEEE Transactions on

Information Theory 45(2), 1999.

[36] N. Wiberg, “Codes and Decoding on General Graphs”, in h.D. Thesis, Linköping University (1996).

[37] J. Chen, A. Dholakia, E. Eleftheriou, M. Fossorier, X. Hu, “Reduced-Complexity Decoding of LDPC

Codes”, in IEEE Transactions on Communications 53(8), 2005.

[38] NVIDIA, “NVIDIA's Next Generation CUDA Compute Architecture: Fermi”, Whitepaper,

http://www.nvidia.com, 2009.

[39] Intel Corporation, “Intel 64 and IA-32 Architectures Software Developer's Manual”, Manual,

http://www.intel.com, 2011.

[40] The ortland Group, “ GI CUDA-x86”, http://www.pgroup.com/resources/cuda-x86.htm (accessed

May 2012.)

[41] Khronos Group, “OpenCL - The open standard for parallel programming of heterogeneous systems”,

http://www.khronos.org/opencl (accessed May 2012.)

[42] G. Falcão, L. Sousa and V. Silva, “Massive parallel LD C decoding on G U”, in roceedings of the

13th ACM SIGPLAN Symposium on Principles and practice of parallel programming, 2008.

http://www.nvidia.com/
http://www.nvidia.com/
http://www.intel.com/
http://www.pgroup.com/resources/cuda-x86.htm
http://www.khronos.org/opencl

 Deliverable D2.2

ENGINES Page 67

[43] . Micikevicius, “Analysis-Driven Optimization”, resented at the G U Technology Conference 2010,

San Jose, California, USA, 2010.

[44] G. Falcão, J. Andrade, V. Silva and L. Sousa, “G U-based DVB-S2 LDPC decoder with high

throughput and fast error floor detection”, in Electronic Letters 47(9), 2011.

[45] F. Oggier, and E. Viterbo, “Algebraic number theory and code design for Rayleigh fading channels”,

Foundations and Trends in Communications and Information Theory, 1 (3). pp. 333-415, 2004.

[46] Frame structure channel coding and modulation for a second generation digital terrestrial television

broadcasting system (DVB-T2), ETSI Std. EN 302 755, Rev. 1.2.1, 2011.

[47] Cisco visual networking index: global mobile data traffic forecast update – 2010-2015, While paper,

February 2011

[48] A. Paulraj, R. U. Nabar, and D. Gore, Introduction to Space-Time Wireless Communications.

Cambridge (UK): Cambridge Univ. Press, 2003.

[49] S. H. Müller-Weinfurtner, “Coding approaches for multiple antenna transmission in fast fading and

OFDM,“ IEEE Trans. Signal rocessing, vol. 50, no. 10, pp. 2442–2450, Oct. 2002.

[50] B. M. Hochwald and S. ten Brink, “Achieving near-capacity on a multiple-antenna channel,” IEEE

Trans. Inf. Theory, vol. 51, no. 3, pp. 389–399, Mar. 2003.

[51] C. Douillard, M. Jezequel, C. Berrou, A. icart, . Didier, and A. Glavieux, “Iterative correction of

intersymbol interference: Turbo equalization,” European Trans. Telecomm., vol. 6, pp. 507–511, Sept.–

Oct 1995.

[52] R. Koetter, A. C. Singer, M. Tüchler, “Turbo equalization,” IEEE Signal rocessing magazine, vol. 21,

no. 1, pp. 67-80, January 2004.

[53] X. Wang and H. oor, “Iterative (turbo) soft interference cancellation and decoding for coded

CDMA”,IEEE Trans. Commun., vol. 47, no. 7, pp. 1046–1061, 1999.

[54] P. Moss, T. Y. oon, and J. Boye, “A simple model of the UHF cross-polar terrestrial channel for DVB-

NGH,” White aper, BBC, 2011.

[55] . Fertl, J. Jaldén, and G. Matz, “Capacity-based performance comparison of MIMO-BICM

demodulators,” In roc. IEEE S AWC-2008, Recife, Brazil, July 2008, pp. 166–170.

