
Programming Embedded Systems 2018 / JB
Exercise 2 / 17/24.9.2018 / Deadline for submitting report 8.10.2018

Return report electronically on address: https://abacus.abo.fi/ro.nsf. If you do not have an ÅA account, please

email jerker.bjorkqvist@abo.fi

Advisor: Jerker Björkqvist, Agora

Equipment and tools

Equipment used:

a) Texas Instruments LaunchPad MSP430G2 development card

b) Own laptop

Task

Using the requirements from ex1, rewrite the program to support basic Embedded Operating System

(EOS), by

a) Rewriting software into tasks (and init-functions) , writing O-O embedded C-code

b) Creating variable delays (in ms) by using programmable timers and interrupts

c) Basic reading for switches

Details

Tasks. Create tasks (~=functions) for

d) blinking the led

e) reading input from a input pin (led stops blinking when button pressed)

…

f) creating a functionality for variable delay (in ms), using timers and interrupts

O-O embedded C-code means that software modules should be clearly divided into separate files /

and functions. Settings specific for microcontroller / topic area should be separated in include (.h)

files.

Programmable timers on the MSP430. MSP430 has five types of timer modules; Basic Timer, RTC,

Watchdog Timer, Timer_A, Timer_B. In this exercise, we use Timer_A.

Timer_A is a 16 bit timer, and can be configured in different ways. It can count up / down, use

different clock sources, use different dividers. Here are the following important registers:

TACTL (alt. TA0CTL)

 TASSEL_X Set clock source (ACLK, SMCLK, TACLK, INCL)

 ID_X Divider from clock source (1/2/4/8)

 MC_X counting mode

CCTL0 (alt. TACCTL0) – Capture /compare control 0

 CCIE enable interrupts

mailto:jerker.bjorkqvist@abo.fi

CCR0 (TACCR0) – Capture / Compare control register

 Put here the value to count to

By configuring the timer (TACTL), configuring interrupts (CCTL0) and setting the correct capture /

compare value (CCR0) we can generate a interrupt with predefined intervals.

In order run some code when the interrupt occurs, we have to tell the compiler to place some code

at a specific place and that it is an interrupt. This varies with different compilers, but in TI GCC:

__attribute__((interrupt(TIMER0_A0_VECTOR))) void Timer_A(void) {

 timer_run();

}

The code to be run is now timer_run()

In order to enable interrupts in the system, you also have to have a statement

 __enable_interrupt();

Registers for I/O:

 PxDIR – register for controlling I/O-port direction

 P1DIR |= 0b00100000; // pin 6 on port 1 is set as output

 PxOUT – register: latch for output port

 P1OUT |= 0b00100000; // pin 6 on port 1 is set high

PxIN – value on port (for reading input)

myval = P1IN & 0b00100000; //Value on Port 1 pin 6

PxREN – enable pullup / pulldown

 P1REN |= 0b00100000; // enable pullup/pulldown,

 pullup/pulldown dependent on P1OUT

Note also that your “ports.h” file can (should) be written like this

#define RED_LED PORT P1OUT

#define RED_LED_PIN (0b00100000)

Document what you have done, and submit the documentation and the code you have produced

electronically to the address give above.

Programming Embedded Systems / JB

General rules for documenting projects:

Each report should include:

 Title

 Name

 Date / timeframe when exercise performed

 Group (if not done individually)

 Assumptions on knowledge of the reader

 Own contribution (if performed in group)

 Description of the task / exercise

 Description of the equipment used

 Description of performed work

 Achieved results

