## Digital Television Techniques / 2013

## Exercise 1, Video compression, 28-March-2013

This exercise shall be returned to the lecturer (Jerker Bjïi $\frac{1}{2}$ rkqivst) electronically at https://abacus.abo.fi/ro.nsf Deadline is April 12, 2013.

1. The transformation from the $(R, G, B)$ color plane to the $(Y, C r, C b)$ is in TIFF and JPEG (YCC, Rec 601-1) defined as

$$
\left[\begin{array}{c}
Y \\
C r \\
C b
\end{array}\right]=\left[\begin{array}{ccc}
0.2989 & 0.5866 & 0.1145 \\
0.500 & -0.4183 & -0.0816 \\
-0.1687 & -0.3312 & 0.500
\end{array}\right]\left[\begin{array}{l}
R \\
G \\
B
\end{array}\right]
$$

Calculate the $(Y, C r, C b)$ representation ( $0-255$ ) for the ( $R, G, B$ ) values $0 \times 36733 \mathrm{D}$ and $0 \times 22824 \mathrm{E}$. Note! The $C r$ and $C b$ values must be shifted up with 127.5. What is the reverse transform?
2. The DCT transform in 2 dimensions are defined as

$$
S(u, v)=C(u) C(v) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} s(x, y) \cos \left[\frac{(2 x+1) u \pi}{2 N}\right] \cos \left[\frac{(2 y+1) v \pi}{2 N}\right]
$$

where $s(x, y)$ is the original signals of the $N \times N$ sized matrix of luminance values corresponding to picture pixels, $x$ and $y$ are the coordinates in the spatial plane, $S(u, v)$ are the frequency components and $u$ and $v$ the coordinates in the frequency plane. The coefficients $C(k)$ are defined as
$C(k)= \begin{cases}\sqrt{\frac{1}{N}} & \text { if } k=0 \\ \sqrt{\frac{2}{N}} & \text { if } k \neq 0\end{cases}$
For the following picture $s$, calculate the corresponding DCT transformation.

$$
s=\left[\begin{array}{llll}
1 & 2 & 3 & 2 \\
2 & 3 & 5 & 2 \\
3 & 7 & p & 3 \\
2 & 5 & 5 & 3
\end{array}\right]
$$

where $p$ is the last digit of the day of the month of you birth date (e.g. for July, $p=7$ ).
After this, perform a quantization of the coefficients in 3 bits ( 8 levels), as scaling you can use $S=a S^{\prime}+b$ where $a$ and $b$ are coefficients and $S^{\prime}$ is the quantified matrix. Calculate the matrix $S^{\prime}$ and the scaling factors. After this, perform the inverse DCT transformation. What is the error compared to the original signal?
IDCT is defined as

$$
s(x, y)=\sum_{u=0}^{N-1} C(u) \sum_{v=0}^{N-1} C(v) S(u, v) \cos \left[\frac{(2 u+1) x \pi}{2 N}\right] \cos \left[\frac{(2 v+1) y \pi}{2 N}\right]
$$

3. Two pictures are given in the files:

The picures, size $232 \times 217$, are given as pixel greyscale levels $0-255$, each row corresponds to a row in the picutre, each column to to a column, in comma separated ASCII format. Calculate the motion (i.e cat2 vs. cat1) vector for the Macroblock $(16 x 16)$ located at position $(112,112)$.

The motion vector in this case is a relative movement of the macroblock.

