Major data structures for process scheduling

 in Linux kernels 2.4 and 2.6

Roman Boguslavskiy

Bachelor of Science Thesis

Department
of Information Technology

Instructors: Mats Aspnäs, Jerker Björkqvist

Åbo Akademi

Preface

In this study I will take a closer look at data structures which were used for task management in different kernels. For each of this data structures I will discuss their contributions to the overall performance of the scheduler as well as weakness and limitations they encountered. Finally I will take a look at the latest Linux scheduler (Completely Fair Scheduler) with empathis on the red-black tree data structure which it's relying on. Thus the reader will get a better understanding of the major data structures used for taks scheduling and mangment in Linux scheduler.
Contents
 1 Introduction

 2 Overview of Process Scheduling in Linux
 2.1 Process Priorities

 2.2 Scheduling Policies

 2.3 Process Classification in Linux

 2.4 Process Preemption

 2.5 Processes and Threads

 3 The Linux 2.4.x Scheduler
 3.1 Runqueue

 3.2 Scheduling On Multiple CPUs

 3.3 O(N) Time Performance

 4 The Linux 2.6.8.1 Scheduler
 4.1 Multiple-level Queues

 4.2 How Priority Arrays are Used

 4.3 O(1) Time Performance

 5 The Linux 2.6 Completely Fair Scheduler
 5.1 What is Fair Scheduling

 5.2 Red-Black Tree

 5.3 How Red-Black Tree Is Used

 5.4 Priorities and CFS

 5.5 O(log N) Time Performance
 6 Conclusion

Bibliography
1. Introduction
2. Overview of Process Scheduling in Linux
Modern operating systems allow more than one process to exist at any given time. Processes do not need to be aware of each other unless they are designed so. This makes programs easier to develop, maintain and port. [5] For scheduler however it is important to distinguish between different types of processes.
The scheduler in Linux must fulfill several important objectives such as: fast process response time, good throughput for background jobs and avoidance of process starvations [1]. In principle scheduler should strive treat all processes as fair as possible giving each process a fair amount CPU, but it is not always true for some types of systems. For example, in desktop systems a good response time for interactive processes is expected. Therefore this types of processes are often prioritized over others in desktop systems. So in practice, these scheduling goals often conflict so the scheduler should be able to implement some suitable compromise.
2.1 Process Priorities
Scheduling is based on ranking processes according to their priorities. A real-time process always have higher priorities than a conventional process. Kernel represents static priority of the conventional process with a number ranging from 100 (highest priority) to 139 (lowest priority) whereas static priority of real-time process ranges from 1 (highest priority) to 99 (lowest priority) [1]. Thus a running real-time process inhibits execution of every lover priority process when it is in a runnable state [1].
2.2 Process Classification in Linux

Interactive process
As it is implied by its name this process constantly interacts with the user. Theses processes normally spend the time waiting for key-presses and mouse operations [1]. The response time of interactive process must quite short, so when then input is received the process is woken up quickly. Typical interactive applications are text editors, command shells and graphical applications [1].

Batch process

Because these processes do not need user interactions they often run in the background. Typical batch programs are compilers, database search engines, and scientific computations. [1]

Real-time processes
Theses processes should never be blocked by lower-priority processes and should have strict response time. Typical real-time programs are video and sound applications, robots controllers, programs that collect data from physical sensors. [1]
2.3 Scheduling Policies

In addition each process has an associated scheduling policy or scheduling class. The scheduler makes it decisions based on knowledge of the scheduling policy and static priority of all processes on the system [6]. Below are the scheduling policies used by Linux scheduler:
SCHED_OTHER
Is the standard Linux time-sharing scheduler that is intended for all processes that do not require the special real-time mechanisms. The process is scheduled to its dynamic priority. [6]
SCHED_FIFO
A first-in, first-out policy
SCHED_BATCH
Is similar to SHED_OTHER.The difference is that this policy will cause the scheduler to always assume that the process is CPU-intensive [6].
SCHED_RR
A round-robin policy for real-time processes.

Depending on the process's policy the scheduling algorithm behaves differently.
2.4 Process Preemption

Linux processes are preemptive. A typical scenario when new process preemption happens is when a new process with higher priority than of current process becomes ready to run. In this case the current process will be preempted by a new process.

2.5 Processes and Threads

In Linux, all threads are simply processes that can share some resources. Linux treats a group of threads as a process. A process or a group of threads are identified by so called thread group ID (TGID). Linux maintains a task structure for each thread task_struct. This structure contains TGID field which indicates to which group (or process) the thread belongs. [5] In the following chapters I will refer to Linux threads as “tasks” as smallest scheduling units.
3. The Linux 2.4.x Scheduler

The algorithm in Linux 2.4.x scheduler divides time into so called “epochs” . This essentially are periods of time during which every task can use its time interval. This time interval is known as a time-slice or quantum [1] which determines how many milliseconds the task is allowed to run in the current epoch.

In this and the following chapters chapters I will not go into the details how the time-slice is determined by the scheduler. Instead I will describe the fundamental data structure which algorithm relies on.

3.1 Runqueue

In original 2.4 scheduler all tasks on the system were already on a so called tasklist .[3] A tasklist was essentially a run queue. According to [2] the processes in tasklist were represented as a collection of struct task_struct structures which were linked in to ways:
· as a hashtable, hashed by pid

· And as a circular, doubly-linked list using p->next_task and
p->prev_task pointers
The tasks were hashed by their pid value (process id). It was used to quickly find a task by a given pid. Below is an example of function inline find_task_pid() (include/linux/shed.c in 2.4 Linux):
static inline struct task_struct *find_task_by_pid(int pid)

{

 struct task_struct *p, **htable = &pidhash[pid_hashfn(pid)];
 for(p = *htable; p && p->pid != pid; p = p->pidhash_next) ;

return p;

}
The tasks which are hashed to the same pid value were linked by p->pidhash_next and p->pidhash_pprev [2]. Theses were used by hash_pid() and unhash_pid() procedures to insert or remove a given process into the hash table.

The tasklist was also represented by a circular doubly-linked list [2]. This allowed the one to go through all the tasks in the system easily. This was achieved by the for_each_task() macro defined in include/linux/shed.c in 2.4 Linux kernel [2]:
#define for_each_task(p) \

for (p = &init_task ; (p = p->next_task) != &init_task ;)
3.2 Scheduling on Multiple CPUs
Since a single runqueue is used for all processors the task could be scheduled on any processor – which can be good for load balancing but not for memory cashes [4] (see Figure 1).
[image: image1.jpg]Pn

P3

P2

P1

Figure 1. The tasks could execute on any processor in 2.4 scheduler [3]

So the task ones scheduled on processor A and thereafter scheduled on processor B could not utilize in data in cashe from its previous execution . On multiple processor system, it was simple a matter of chance if the task was executed several times on the same processor [3].
The 2.4 scheduler had another problem which effected its performance on multiprocessor systems. The tasklist is guarded by a single read/write spinlock [3]. This spinlock is used so that several processors could examine the tasklist in parallel while only one processor at a time could remove or change the tasks state in the tasklist. As a system got busier, the task list got longer. When scheduler decided which task to run next it attempted to acquire an exclusive lock to the tasklist to remove the task from runnable list . However it could be forced to wait until the tasklist was examined by other scheduling threads (readers) first. In case of multiprocessor system while waiting on the spinlock to remove the task from runnable list and mark it running other processors could chose the same task. In this case the other processors had to go back to the linear search over the tasklist to find another task [3].
3.3 O(N) Time Performance
In this design each time the scheduler selected the next task to run it searched through the list looking for the best candidate. Obviously since the task were not organized in any helpful way the scheduler iterated over the hole list [3]. As a consequence its performance depended on the number of tasks in the system.

Whereas the performance the of 2.4 Linux scheduler could be acceptable when the number of tasks running in the system was small it surely suffered when number of task were large.
4. The Linux 2.6.8.1 Scheduler

The 2.4 scheduler had an advantage of being quite simple to implement but as I showed in previous chapter had serious limitations. Changes needed to be made so that scheduler could scaled well to loaded systems with multiple CPUs. The new 2.6 scheduler has been completely rewritten but large part of scheduling heuristic is similar to 2.4 version. Task priorities, task slices, devision of time into epochs, scheduling policies – these are the features that 2.6 scheduler used as well. One the significant differences is that 2.6 scheduler uses multiple-level queues instead of single runqueue. As I will show in this chapter much of the improvement in scheduler, in particular its O(1) time performance were achieved by effective use of priority arrays for task management .

4.1 Multiple-level Queues

Scheduler 2.6 has a fundamentally different implementation of runqueue. In contrast to former scheduler where a single runqueue was sheared among several CPUs 2.6 scheduler maintains a dedicated runqueue for each CPU. The core data structures in runqueue are two so called priority arrays. These arrays represent the the runnable tasks in the systems. One of these contains active task and the other one contains expired tasks (see Figure 2).
[image: image2.png]expired
priority 0
anays{0] priori;y 139

arrays[1]

priority 139

Figure 2. The runqueue structure and the two sets of runnable tasks
When task runs out of it timeslice or quntum it is than inserted into expired array to wait for more CPU time. Eventually when the active array becomes empty the scheduler swaps the two arrays and then begins executing tasks on the new active array. [1]

The priority array structure is defined as follows (in kernel/sched.c, Linux kernel 2.6.8.1) :
struct prio_array {

 int nr_active;

 unsigned long bitmap[BITMAP_SIZE];

 struct list_head queue[MAX_PRIO];

 };
As can be seen from pri_array structure each element in the array is doubly-linked list head. There are 140 (maximum priority in Linux 2.6) lists heads in the priority array [1] as illustrated in figure 2. For each priority theres is exactly one doubly-linked list (queue).

Structure also contains a counter nr_active that keeps track of the number of tasks held in the priority array and a bitmap[].The bitmap is used to efficiently locate the task of the highest priority. What it does is that it represents the priorities for which the active task exist [5]. For example – the bit 0 and 4 are set if there are two task at priority 0 and one task at priority 4. This makes searching for the highest priority task as simple as locating the highest order bit which can be done in constant time [5].
4.2 How Priority Arrays Are Used

When a task is added to a priority level it is added to the linked list (queue) for its priority level. As it gains or loses priority it moves a level up or down in the priority array. They main strength of this tasks structure is that it allows the scheduler efficiently find the highest priority task. It is simply a matter of locating the first set bit in the bitmap as was described in previous section. From the position of the first bit the scheduler determines the highest priority for which the active task/tasks are present. It therefore knows at which level (in which queue) to start executing the tasks . Tasks of the same priorities are scheduled round-robin within the list [5].

When the task runs out of its timeslice it is moved to expired priority array [4]. During this move the timeslice of the task is recalculated [5]. When there are no more runnable tasks left in active array for a given priority the pointers of active and expired arrays are simply swapped [4] [5].
Below is an implementation of enqueue_task() procedure in Linux kernel 2.6.8.1 (in kernel/sched.c):
static void enqueue_task(struct task_struct *p, prio_array_t

*array)

{

list_add_tail(&p->run_list, array->queue + p->prio);

 __set_bit(p->prio, array->bitmap);

 array->nr_active++;

 p->array = array;

 }
The procedure enqueue_task() takes a process p and a priority array array. It then inserts the process' runlist (list with process' threads) p->run_list in the appropriate queue array->queue specified by process priority p->prio. Next the priority array's bitmap is updated with __set_bit(). The last two lines update array's process counter and process' array pointer.
4.3 O(1) Time Performance
Finding the list with the highest priority tasks can be done in constant time, thanks to the efficient bitmap mechanism. Finding the highest priority task in the list is a constant-time operation as well since the scheduler simply needs to dequeue the first task from the queue specified by the priority. Furthermore, transition between active and expired priority arrays does not require moving task from one place to another (only pointers are swapped) and therefore is also performed in constant-time.

Thus, every part of the scheduling algorithm is guaranteed to execute within a constant amount of time regardless of how many tasks are on the system.
5. The Linux 2.6 Completely Fair Scheduler
This scheduler, instead of relying on arrays and linked lists for the runqueue, uses a fundamentally different data structure for task management called red-black tree. The main idea on which the CFS is based is to maintain a balance (fairness) in providing processor time for tasks [9]. Acoording to the author of CFS Ingo Molnar, the design of the scheduler can be summed up in a single sentence: “CFS basically models an ''ideal, precise multi-tasking CPU'' on real hardware [10].

5.1 What Is Fair Scheduling

This means that task should be given a fair amount of the processor. When the time of a task is out of balance – meaning that one or more tasks are not given a fair amount of time relative to other tasks , then those out of balance task should be given time to execute.
CFS maintains the balance based on the amount of time given to a task so called virtual runtime. In other words the smaller the task's virtual runtime – meaning the smaller amount of time the task has been given access to the processor – the higher its need for the processor. [9]

5.2 Red-Black Tree

CFS maintains a time ordered red-black tree. This data structure is quite complex, but it has good O(log N) worst-case running time for its operations. In particularly, it can search, insert and delete in O(log n) time, where n is a number of elements in the tree. An interesting properties which CFS scheduler relies on is that the red-black tree is always balanced.
Before I tell about how red-black tree is used by the scheduler I would like to tell a few words about the data stricture itself. Red-black tree is a binary search tree where node are colored either black or red. It has following characteristics [11]:
1. The root is black

2. If a node is red, its children must be black

3. Every path from a node to a leaf (null reference) must contain the same number of black nodes.
Inserting or deleting an element from the tree involves making sure that these conditions are preserved. When these conditions are preserved the tree is balanced. As a consequence , when the tree is balanced the height of the tree never exceeds 2log(n+1) where n is number of tree nodes. In this chapter I will not go any further to describe heuristics behind insertion and deletion algorithm which is used to preserve these conditions. Instead, I will focus on how CFS scheduler uses this data structure to achieve fairness in scheduling.
5.3 How Red-black Tree Is Used by CFS
Below (in Figure 3) is an example of red-black tree where tree nodes represent runnable tasks. It has to mentioned that leaves in the tree contain no information only the internal nodes represent tasks [9].
[image: image3.png]MO [N

Nodes represent
sched_entity(s)
indexed by their

virtual runtime

virtual runtine

NiL]

ND) (MO [N

Most need of CPU

Least need of CPU

Figure 3: Example of red-black tree [9]

As can be seen from Figure 3 tasks are sorted in accordance with their virtual runtime. So the leftmost task in the tree (lowest virtual runtime) is the one with highest need for processor. The tasks with least need for the processor are stored towards the right side of the tree [9]. Scheduler always picks the tasks represented by left-most node of the tree to execute next. Once the task's runtime gets high enough the task is preempted and its runtime (execution time) is added to its virtual time. CFS then inserts the task further to the right of the tree. In some way its behavior is similar to previous (kernel 2.6.8.1) scheduler where a recently preempted task was inserted a level/levels down in expired priority array. The degree to which the task is placed to the right of the tree depends on its newly obtained virtual runtime.

All tasks in Linux are represented by a task structure task_struct. This structure describes all information related to the task which is required by scheduler. It include such fields as task's current state, its stack, process flags, priority and etc [9]. It is also contains sched_entity structure which gets initialized ones task becomes runnable. It is used to track scheduling information of the task.
struct sched_entity {

struct load_weight
load;

/* for load-balancing */

struct rb_node

run_node;

struct list_head
group_node;

unsigned int

on_rq;

u64

exec_start;

u64

sum_exec_runtime;

u64

vruntime;

…

…

};
The shed_entity contains the rb_node, load weight and variety of statistics data. Each node in the red-black tree is represented by an rb_node structure which only contains the child references and the color of the parent. Most importantly sched_entity structure contains vruntime, this is the task's virtual runtime. This field indicates the amount of time the task has run and also serves as an index for the red-black tree. [9]
5.4 Priorities and CFS

CFS does not priorities like previous scheduler where priority of the task determined its timeslice. Instead CFS treats task priority as decay factor [9]. It means that ones a task is scheduled to execute its time elapses with different rate depending on its the priority. In another words the time for a task with lower priority elapses quicker than for a for a task with higher priority, so lower-priority will get less CPU time than higher-priority tasks.

5.5 O(log N) Time Performance
Since CFS relies on red-black tree data structure for task management the time complexity for look up, insert and delete operations is O(log N). Logarithmic time performance is measurable slower than O(1) which previous scheduler employed, but only for very large number of tasks [13]. However according to [13], non-left-most lookup is hardly ever done and the left-most node pointer is always cached. In practice it means that in most cases the tree traversal is not needed since the pointer for the task with highest demand for CPU is stred in cash memory.
6. Conclusion
Bibliography

[1] Daniel P. Bovet & Marco Cesati. Understanding the Linux Kernel. O'Reilly Media, October 2000

[2]Tigran Aivazian, Linux Kernel 2.4 Internals.
http://www.moses.uklinux.net/patches/lki.html
[3] Rick Lindsley, Kernel Korner - What's New in the 2.6 Scheduler?
http://www.linuxjournal.com/article/7178
[4] M.Tim Jones, Inside the Linux scheduler, 30 Jun 2006

http://www.ibm.com/developerworks/linux/library/l-scheduler/

[5] Josh Aas, Understanding the Linux 2.6.8.1 CPU Scheduler , Silicon Graphics, Inc. (SGI) , February 2005

[6] Linux Programmer's Manual, Section: SCHED_SETSCHEDULER(2)

Obtained from: http://www.kernel.org/doc/man-pages/online/pages/man2/sched_setscheduler.2.html
on 20.03.2012

[7] The Linux Kernel Primer. A Top-Down Approach for x86 and PowerPC Architectures
http://flylib.com/books/en/4.454.1.45/1/
[8] Linux Kernel
http://www.kernel.org/pub/linux/kernel/v2.6/
[9] Tim M. Jones, Inside the Linux 2.6 Completely Fair Scheduler, 15 Dec 2009
http://www.ibm.com/developerworks/linux/library/l-completely-fair-scheduler/
[10] CFS Scheduler. Linux documentation.
http://www.linuxjournal.com/article/7178?page=0,2
[11] Mark A, Weiss, Data structures and algorithm analysis in Java, Addison Wesley Longman, 1999

[12] Completely Fair Scheduler, Linux Journal, August 01, 2009

Obtained from: http://www.linuxjournal.com/magazine/completely-fair-scheduler
[13] Kumar. A, Multiprocessing with the Completely Fair Scheduler, 08 January 2008

Obtained from: http://www.ibm.com/developerworks/linux/library/l-cfs/index.html
Michael K.Jonson & Erik W.Troan, Linux Application Development. Addison Wesley Longman, March 1999

