

Lecture 7

Digital television

Coded Orthogonal Frequency Division Multiplexing

- Need for a good transmission technique
- Explanation of the different parts
 - Coded
 - Frequency Division Multiplexing
 - Orthogonal

DVB-S

DVB-C

DVB-T

DVB-S/C/T Comparison

	S	С	Т
Energy dispersal	Х	Х	Х
Outer coding (Reed-Solomon (204,188))	Х	Х	Х
Outer interleaving	Х	Х	Х
Byte to m-tuple conversion		Х	
Differential encoding		Х	
Baseband shaping / QAM modulation		Х	
Inner coding	Х		Х
Inner interleaving	Х		Х
Mapping and modulation (QAM / QPSK)	Х		Х
OFDM			X

- Single Frequency Network (SFN)
- Mobile reception
- Problems
 - Multipath interference ghosts
 - Noise interference snow
 - Variable path attentuation fading
 - Interference to existing services
 - Interference from other services

			Rate	
Standard	Meaning	Carrier Freq.	(Mbps)	Applications
DAB	Digital Audio Broadcasting	FM	0.008-0.384	Audio broadcasting
DVB-T	Digital Video Broadcasting	UHF	3.7 - 32	Digital TV broadcasting
IEEE 802.11a	Wireless LAN	5.2GHz	6 - 54	Wireless networks
IEEE 802.16.3	Fixed Wireless Access	2.1GHz	0.5 - 12	Internet/voice access

ProTeleVision (Denmark) builds SFN network in Singapore

Interior view of a bus

Mobile Television onboard a tram in Cologne, Germany

Mobile television in Turku bus

Mobile reception

- Developed by the digital video broadcasting project group - DVB
- Uses similar technology to DRB (DAB)
- Uses 1705 or 6817 carriers
- Variable carrier modulation types are defined allowing data rates of 5-27 Mb/s in 7 MHz
- Developed for 8 MHz channels
 - A 7 MHz variant has been produced and tested
- Can use single frequency networks SFNs
- New technology with scope for continued improvement & development

BST OFDM Japan

- BST-OFDM is a variant of the European COFDM system which allows segmenting of the data spectrum into 100 kHz blocks.
- 2 receiver bandwidths proposed.
 - 500 kHz portable / mobile for sound and data
 - 5.6 MHz fixed / mobile for SDTV and LDTV
 - 5.6 MHz fixed for HDTV
- Individual band segments can be allocated to separate services which can use different modulation systems

Channel spacing

- Existing analog TV channels are spaced so they do not interfere with each other.
- Gap between PAL TV services
 - VHF 1 channel
 - UHF 2 channels
- Digital TV can make use of these gaps

Digital challenges

- Digital TV must co-exist with existing PAL services
 - DTV operates at lower power
 - DTV copes higher interference levels
 - Share transmission infra-structure
 - DTV needs different planning methods

ital televsion techniques – Lecture 7

A ademi

The effect of a multicarrier system

Mathematical description of COFDM

Each carrier is modulated $s_c(t) = A_c(t)e^{\int [\omega_c t + \phi_c(t)]}$

Several carriers are summed $s_s(t) = \frac{1}{N} \sum_{n=0}^{N-1} A_n(t) e^{j \left[\omega_n t + \phi_n(t) \right]}$

$$\omega_n = \omega_0 + n\Delta\omega$$

Takes fixed values

...Mathematical description of COFDM

Zeroth frequency -> 0 gives

$$s_s(kT) = \frac{1}{N} \sum_{n=0}^{N-1} A_n e^{j\phi_n} e^{j(n\Delta\omega)kT}$$

Compare with IFT

$$g(kT) = \frac{1}{N} \sum_{n=0}^{N-1} \qquad G\left(\frac{n}{NT}\right) e^{j2\pi nk/N}$$

Equivalent if

$$\Delta f = \frac{1}{NT} = \frac{1}{\tau}$$

Visualization of COFDM

Modulation of subcarriers

ademi

COFDM principle

Traditional SCPC Modulation

adem

COFDM Orthogonal carriers

COFDM Orthogonal carriers

b

$$\int_{a}^{b} \Psi_{p}(t)\Psi_{q}^{*}(t)dt = \int_{a}^{b} e^{\int_{a}^{2\pi(p-q)q\tau} \mathbf{1}} dt$$

$$= (b-a) \text{ for } p = q$$

$$= \frac{e^{\int_{a}^{2\pi(p-q)hq\tau} \mathbf{1}} - e^{\int_{a}^{2\pi(p-q)f\tau} \mathbf{1}}}{\int_{a}^{2\pi(p-q)f\tau} \mathbf{1}}$$

$$= \frac{e^{\int_{a}^{2\pi(p-q)hq\tau} \mathbf{1}} [1 - e^{\int_{a}^{2\pi(p-q)(\alpha-b)f\tau} \mathbf{1}}]}{\int_{a}^{2\pi(p-q)f\tau} \mathbf{1}}$$

$$= 0 \quad \text{ for } p \neq q \text{ and } (b-a) = \tau$$
(remember that p and q are integers)

Spectrum of COFDM

Subchannel response - pilots

22

ademi

Subchannel response - pilots

• For the kth carrier:

$$\mathbf{x}_{k} = \mathbf{H}_{k} \mathbf{s}_{k} + \mathbf{v}_{k}$$

where $H_k = \sum_{n=0}^{N-1} h_k(nT_s) \exp(j2\pi k n / N)$

• Frequency domain equalizer

 $\hat{\sigma}_{k}^{2} = \sigma_{k}^{2} |H_{k}^{-1}|^{2}$

k

$$|\mathrm{H}^{-1}_{k}|^{2}$$
 $|\mathrm{H}^{-1}_{k}|^{2}$ bad good

Subchannel response - pilots

- Many systems use pilot tones known symbols
 - Given s_k , for k=k₁, k₂, k₃, ... solve $x_k = \sum_{l=0}^{L} h_l e^{-j2\pi k l/N} s_k$ for h_l
 - Find $H_k = \sum_{l=0}^{L} h_l e^{-j2\pi k l/N}$ (significant computation)
- More pilot tones
 - Better noise resiliance
 - Lower throughput (pilots are *not* informative)

24

adem

System failure characteristics Good Analog - Digital Quality Edge of Service Area $|\rangle$ Rotten Close Far Distance

COFDM parameters

- Carrier modulation: 2k, 8k
- Type of modulation QPSK, 16QAM, 64QAM
- Guard interval ¼, 1/8, 1/16, 1/64
- Inner coder puncture rates: 1/2, 2/3, 3/4, 5/6, 7/8
- Hierarchical modes
- Selection of transmission bandwidth (6/7/8 MHz)

DVB in Finland / Others

Parameters: FINLAND :COFDM, 8k, 64QAM, 2/3 Code, Guard interval 1/8

SWEDEN: COFDM, 8k, 64QAM, 2/3 Code, Guard interval 1/8

UK: COFDM, 2k, 64QAM, 2/3 Code, Guard 1/32

ITALY: COFDM, 8k, 64QAM, 2/3 Code, Guard 1/4 COFDM, 8k, 64QAM, 3/4 Code, Guard 1/32

A+B

2010

DVB-T Parameter selection

- Number of carriers (2k / 8k)
 - Intercarrier spacing is a function of number of carriers
 - More carriers: More sensitive to frequency offsets, less sensitive to maximum delay spread

• Type of modulation

- Higher order: More bits on air, more sensitive to noise
- Code rate
 - Capability of correcting errors (decrease with increaseing code rate
- Gard interval
 - Longer gard interval: Increased maximum delay spread, less data

OFDM Planning example

- 8 MHz bandwidth
- 8k system, 64 QAM, 2/3 code, GI 1/8
- Bandwidth: 20MHz
- Subcarrier spacing : $\Delta f = 8MHz / 8192 = 976 Hz$
- OFDM symbol duration: $T_{FFT} = 1/\Delta_f = 1024us$
- Cyclic prefix duration: $T_{GI} = 128us (1/8)$
- Symbol duration: $T_{symbol} = T_{FFT} + T_{GI} = 1152us$
- Symbol frequency $f_{symbol} = 1/T_{symbol} = 868 \text{ s}^{-1}$
- Bits per carrier (64QAM) 6
- Active carriers per symbol
- \rightarrow 22,7 Mbits/s

The DVB-T standard gives specific values used in implementations

Mode	8 k mode				2 k mode				
Guard interval	1/4	1/8	1/16	1/32	1/4	1/8	1/16	1/32	
ΔT _{II}									
Duration of symbol part	8 192*T				2 048*T				
T ₁₁	896 µs				224 µs				
Duration of guard	2 048*T	1 024*T	512*T	256*T	512*T	256*T	128*T	64*T	
interval A	224 µs	112 µs	56 µs	28 µs	56 µs	28 µs	14 µs	7 µs	
Symbol duration	10 240*T	9 216*T	8 704*T	8 448*T	2 560*T	2 304*T	2 176*T	2 112*T	
$T_s = A + T_u$	1 120 µs	1 008 µs	952 µs	924 µs	280 µs	252 µs	238 µs	231 µs	

DVB-S in the World

DVB-C in the World

DVB-T in the World

Case study IEEE 802.11a WLAN

- System parameters
- FFT size: 64
- Number of tones used 52 (12 zero tones)
- Number of pilots 4 (data tones = 52-4 = 48 tones)
- Bandwidth: 20MHz
- Subcarrier spacing : $\Delta f = 20MHz / 64 = 312.5 \text{ kHz}$
- OFDM symbol duration: $T_{FFT} = 1/\Delta_f = 3.2us$
- Cyclic prefix duration: $T_{GI} = 0.8$ us (1/4)
- Signal duration: $T_{signal} = T_{FFT} + T_{GI}$

Case study IEEE 802.11a WLAN

- Modulation: BPSK, QPSK, 16-QAM, 64-QAM
- Coding rate: 1/2, 2/3, 3/4
- FEC: K=7 (64 states) convolutional code

