
Chapter 4: Booting and

Kernel Initialization

2

Objectives

• Explain system lifecycle from power-on to power-off.

• Describe general principles involved in booting a
system and specific details of a standard LILO disk-
based boot on the Intel architecture.

• Motivate and clarify the transfer of control from
hardware, to firmware, to software during system boot.

• Trace significant events in kernel initialization.

• Demonstrate role and importance of the init process.

• Review shutdown procedures.

• Briefly survey a variety of advanced boot concepts.

• Briefly consider power management issues.

3

System Lifecycle: Ups & Downs

• Booting

• Kernel Initialization

• init: Process Number One

• Shutdown

• Advanced Boot Concepts

• Power Management

Power

on
Power

off

Boot Kernel

Init

OS

Init

RUN! Shut

down

4

Boot Terminology

• Loader
– Program that moves bits from

disk (usually) to memory and then
transfers CPU control to the newly
“loaded” bits (executable)

• Bootloader / Bootstrap
– Program that loads the

“first program” (the kernel)

• Boot PROM / PROM Monitor / BIOS
– Persistent code that is “already loaded”

on power-up

• Boot Manager
– Program that lets you choose

the “first program” to load

5

What’s a Loader?

• A program that moves bits (usually) from disk to

memory and then transfers control to the newly loaded

bits (executable).

cpu

loader

disk

bits

memory

bits

1) Move bits

2) Transfer control

6

Who Loads the Loader?

• Of course, the loader is just a program and it resides in memory

too. How did it get there?

• We need a “loader loader” …

cpu

memory

cat

loader

disk

cat

% cat foo

Executable image

(ELF, a.out, COFF)

7

Bootstrap Loader (Bootloader)

• The program that loads the “first program”

• Usually “staged”: primary, secondary

• Requires firmware support (“hardware bootstrap”)

cpu

firmware
(PROM)

kernel

primary

secondary

memory

primary

secondary

kernel

net floppy cd-rom

boot device?

bootloader

8

PROM Monitors vs. BIOS

• BIOS: limited setup via DEL or F1 at boot

• Monitor: continuously accessible command interpreter

• Examples: Sparc OpenBoot, Alpha SRM

cpu

user memory

OpenBoot

PROM

monitor

application
L1-A

(suspend)

Password: xlkjdrf

ok test-all…

ok probe-scsi…

ok help…

ok setenv boot-device net

ok continue

9

Boot Managers

• Code loaded by firmware bootstrap that allows choice

of boot image, specification of boot parameters, etc.

• Adds another “layer” to boot process but increases

flexibility, supports “multiboot” configurations

• Examples: LILO, System Commander

cpu

memory

boot

manager

Ok. Now what?

> boot supertux

10

Booting the PC

• Intel X86 firmware loads a 512 byte “boot sector” at

0x7C00 and transfers control in real-mode (640K limit)

cpu

memory

boot sector

0

2GB

0xc700

BIOS_start 0xfffffff0

BIOS

(64K)

1. Power On Self Test (POST)

2. Generate INT 19h (bootstrap)

3. Select boot device

4. Load boot sector

1. floppy: first sector

2. hard disk: MBR (mboot)

or partition boot block

(pboot)

5. Verify “magic number”

6. Execute boot sector (primary

bootloader)

11

Booting from a Floppy 1

• zImage: compressed kernel dumped directly to floppy

• Boot complicated by real-mode, BIOS, compression

memory

bootsect.S

0x10000

0x7c00

BIOS data

(64K)
1

• BIOS loads boot sector

• Transfers control

12

Booting from a Floppy 2

 2

• Boot sector moves itself (!) to 0x90000

• Loads two more sectors at 0x90200

• arch/i386/boot/setup.S

• arch/i386/boot/video.S

• Loads compressed kernel after BIOS data

• Transfers control to setup.S

• Performs real-mode hardware init

memory

bootsect.S

0x10000

0x7c00

video.S

setup.S

bootsect.S 0x90000

0x90200

compressed

kernel

13

Booting from a Floppy 3

• 3

• setup.S copies kernel to 0x1000 (4K)

• Avoids wasted space but trashes BIOS data

• Kernel consists of two pieces:

• arch/i386/boot/compressed/head.S

• arch/i386/kernel/head.S

• Enters protected mode

• Jumps to 0x1000 (compressed/head.S)

• compressed/head.S

• Sets up stack

• “Self-extracts” kernel

• Jumps to 0x10000 (kernel/head.S)

• kernel/head.S sets up paging

• Jumps to init/main.c:start_kernel (!)

memory
0x1000

compressed

kernel

0x10000

uncompressed

kernel

14

LILO: LInux LOader

• A versatile boot manager that supports:

– Choice of Linux kernels

– Boot time kernel parameters

– Booting non-Linux kernels

– A bewildering variety of configurations

• Characteristics:

– Lives in MBR or partition boot sector

– Has no knowledge of filesystem structure so…

– Builds a sector “map file” (block map) to find kernel

• /sbin/lilo – “map installer”

– Builds map file, boot sector

– Run after change to kernel or /etc/lilo.conf

15

LILO Components

/sbin/lilo

(“map installer”)

/etc/lilo.conf /boot/boot.b

/boot/chain.b

/boot/map

/boot/vmlinuz

16

Example lilo.conf File

boot=/dev/hda

map=/boot/map

install=/boot/boot.b

prompt

timeout=50

default=linux

image=/boot/vmlinuz-2.2.12-20

 label=linux

 initrd=/boot/initrd-2.2.12-20.img

 read-only

 root=/dev/hda1

17

Booting from Disk with LILO

• LILO prints a progress string “LILO boot:”

1. BIOS loads boot sector at 0x7c00

Moves itself to 0x9a00

2. Sets up stack

Loads secondary bootloader at 0x9b00

3. Transfers control to secondary

4. Loads “block map” at 0x9d200

Loads default command line at 0x9d600

5. Waits for user input or timeout

L

I

L

O

boot:

18

Skiff Bootloader Startup
10000000

20000000

40000000

80000000

ENDM

[[text removed]]

>> Compaq Personal Server BootLoader, Rev 2.00(a.out)

>> (Edwin Foo,Jamey Hicks,Dave Panariti,Mike Schexnaydre,Chris Joerg), 00-01-07_15:36

>> SA110 Rev=4401A103

>> (c) 1999 Compaq Cambridge Research Laboratory

Press Return to start the OS now, any other key for monitor menu

eval param blk

+ set dram_size 02000000

 setting param=dram_size to value=02000000

+ set hostname skiff137

 setting param=hostname to value=skiff137

+ set ipaddr 192.168.0.3

 setting param=ipaddr to value=192.168.0.3

+ set gateway 192.168.0.1

 setting param=gateway to value=192.168.0.1

+ set netmask 255.255.255.0

 setting param=netmask to value=255.255.255.0

+ set nfs_server_address 192.168.0.2

 setting param=nfs_server_address to value=192.168.0.2

Press SPACE for command prompt

19

Skiff Bootloader Commands
Skiff Bootloader has commands for:

– managing non-volatile parameter storage,

– selecting a boot target,

– loading flash or ram via XMODEM over the serial connection,

– and examining system configurations and memory.

boot> help

Available Commands:

? | help

help <command> | <command> help

boot [flash|ram|net|nonet|alt]

load [[flash|ram <dstaddr>] | kernel | bootldr | params | usercode]

peek ram|flash|int|short|byte <addr>

poke ram|flash|int|short|byte <addr>

qflash [cfi|autoselect] <waddr>

eflash <sectoraddr>|chip

physaddr <vaddr> -- returns <paddr>

set <param> <value>

show [<param>]

evalparams

params [eval|show|save|reset]

boot>

20

Skiff Bootloader Parameters
boot> params show

 os=autoselect

 boot_type=flash

 force_unzip=0x00000000

 entry=0x10000000

 ramdisk=0x00000000

 dram_size=0x00080000

 dcache_enabled=0x00000001

 icache_enabled=0x00000001

 memc_ctrl_reg=0x0000110C

 maclsbyte=0x000000FF

 serial_number=0x000000FF

 system_rev=0x00000002

 linuxargs= root=/dev/ram initrd ramdisk_size=8192

 hostname=skiff137

 ipaddr=192.168.0.3

 gateway=192.168.0.1

 netmask=255.255.255.0

 nfs_server_address=192.168.0.2

 nfsroot=

 noerase=0x00000000

 xmodem=0x00000001

Kernel boot params

Network params

21

start_kernel

• init/main.c:start_kernel

• identify bootstrap processor (BSP)

• setup_arch()

• init crucial subsystems

• parse_options()

• setup kernel profiling

• enable interrupts (sti())

• calibrate_delay() -- BogoMIPS

• init subsystems needing delay

• check_bugs()

• smp_init()

• spawn init as a “kernel thread”

• become idle process!

start_kernel.htm

22

BogoMIPS

• BogoMIPS is roughly the number of times per second

the CPU can execute a short delay loop

• Used by device init code for short waits

• Widely misused to measure performance

• init/main.c:calibrate_delay

• wait for next clock tick (jiffie)

• make initial estimate

• verify estimate, adjusting as necessary

• print BogoMIPS (without using floating-point!)

calibrate_delay.htm

23

Kernel Options

• Linux accepts a large number

of command line options

(see BootPrompt-HOWTO)

• parse_options() parses and acts on some;

the rest are passed to the init process as arguments

• Examples:
– debug ro rw initrd= noinitrd ramdisk= profile= reboot=

– init=/some/other/program swap= mem= nfsroot=

– lots of driver-specific options

24

init()

• init() begins life as a “kernel thread” and ends by

starting the user-level init process (/sbin/init)

• init/main.c:init

• acquire “the big kernel lock” on a multiprocessor (MP)

• perform high-level initialization – do_basic_setup()

• free __init memory

• release lock

• try to exec (in user space) the init process

• panic if unsuccessful

init.htm

25

do_basic_setup()

• Perform “high-level” initialization requiring memory

and process management to be setup

• init/main.c:do_basic_setup

• do conditional bus init (pci, sbus, mca, etc.)

• sock_init()

• spawn update (bdflush), paging (kpiod) and swapping (kswapd) threads

• device_setup()

• filesystem_setup()

• binfmt_setup()

• mount_root()

• conditionally execute /linuxrc from “initial ramdisk” (initrd)

do_basic_setup.htm

26

/sbin/init

• Ancestor of all processes (but idle); “reaps” children

• Controls transitions between “runlevels”

– 0: shutdown 1: single-user 2: multi-user (no NFS)

– 3: full multi-user 5: X11 6: reboot

• Executes startup/shutdown scripts for each runlevel

init /etc/inittab

linuxconf /etc/rc.d

 rc.sysinit

 rc0.d/

 rc1.d/

 …

getty

nfs

routed

portmap

httpd telinit

27

Shutdown

• Linux buffers writes; use /bin/shutdown to avoid data

loss and filesystem corruption

• shutdown inhibits login, asks init to send SIGTERM to

all processes, then SIGKILL

• Low-level commands: halt, reboot, poweroff

– use -h, -r or -p options to shutdown instead

• Ctrl-Alt-Delete “Vulcan neck pinch”

– defined by a line in /etc/inittab

– ca::ctrlaltdel:/sbin/shutdown -t3 -r now

28

Advanced Boot Concepts

• Initial ramdisk (initrd) – two-stage boot for flexibility

– first mount “initial” ramdisk as root

– execute /linuxrc to perform additional setup, configuration

– then mount “real” root and continue

– see Documentation/initrd.txt for details

– also see “man initrd”

• Net booting:

– remote root (Diskless-root-HOWTO)

– diskless boot (Diskless-HOWTO)

• RAID root – tricks for high-performance root

• OpenPROM – open-source BIOS; burn your own!

29

Power Management

• Halting in the idle process

– idle process executes hlt on Intel

– low-power consumption mode

• Suspending the system

– patches for suspending to disk

• APM: Advance Power Management

– laptop standard power management

• ACPI: Advanced Configuration and Power Interface

– new comprehensive standard from Intel-Microsoft

• Power-management is essential for mobile systems

30

Summary

• Bootstrapping a system is a complex, device-dependent process

that involves transition from hardware, to firmware, to software.

• Booting within the constraints of the Intel architecture is

especially complex and usually involves firmware support

(BIOS) and a boot manager (LILO).

• /sbin/lilo is a “map installer” that reads configuration information

and writes a boot sector and block map files used during boot.

• The Skiff bootloader manages non-volatile memory, loads flash

memory and ram, and allows selection of boot targets.

• start_kernel is Linux “main” and sets up process context before

spawning process 0 (idle) and process 1 (init).

• The init() function performs high-level initialization before

exec’ing the user-level init process.

31

Booting and Kernel Initialization Lab

