
Embedded systems laboratory

TUCS /ÅA

IV - 1 Feb 2012

Linux Loadable Kernel Modules (LKM)

• A way dynamically ADD code to the Linux

kernel

• LKM is usually used for dynamically add

– device drivers

– filesystem drivers

– system calls

– network drivers

– executable interpreters

Embedded systems laboratory

TUCS /ÅA

IV - 2 Feb 2012

Why use LKMs

• Need not to rebuild kernel

• Diagnosing system problems
– Easier to locate in which part of the kernel problems

occur

• Modules are faster to maintain and debug

• LKMs are not slower than base kernel parts

• However, if the system startup is dependent on
a module, it has to be included in the base
kernel
– E.g. File system driver

Embedded systems laboratory

TUCS /ÅA

IV - 3 Feb 2012

Configuring the kernel

• Before building the kernel, it has to be
configured:
– make config/menuconfig/xconfig

– Select drivers into base kernel / as loadable
module / skip

• Kernel is builded with

– make zImage

• Modules are builded with

– make modules

Embedded systems laboratory

TUCS /ÅA

IV - 4 Feb 2012

Kernel menuconfig

Linux Kernel v2.4.21 Configuration

 qqq

 lqqqqqqqqqqqqqqqqqqqqqqqqqqqqqq File systems qqqqqqqqqqqqqqqqqqqqqqqqqqqqqqk

 x Arrow keys navigate the menu. <Enter> selects submenus --->. x

 x Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, x

 x <M> modularizes features. Press <Esc><Esc> to exit, <?> for Help. x

 x Legend: [*] built-in [] excluded <M> module < > module capable x

 x lqqk x

 x x [] Quota support x x

 x x < > Kernel automounter support x x

 x x <*> Kernel automounter version 4 support (also supports v3) x x

 x x <M> Reiserfs support x x

 x x [] Enable reiserfs debug mode x x

 x x [*] Stats in /proc/fs/reiserfs x x

 x x <M> Ext3 journalling file system support x x

 x x [] JBD (ext3) debugging support x x

 x x < > DOS FAT fs support x x

 x x < > Compressed ROM file system support x x

 x x [*] Virtual memory file system support (former shm fs) x x

 x x <*> ISO 9660 CDROM file system support x x

 x x [] Microsoft Joliet CDROM extensions x x

 x mqqqv(+)qqqj x

 tqqu

 x <Select> < Exit > < Help > x

 mqqj

Embedded systems laboratory

TUCS /ÅA

IV - 5 Feb 2012

Placement of standard modules

• Standard modules (distributed with the

kernel) are located in

 /lib/modules/<kernel-version>

– different subdirs depending on contents of the

modules

• kernel/arch, kernel/drivers, kernel/fs, kernel/net

• Own modules

– can in principle be anywhere

Embedded systems laboratory

TUCS /ÅA

IV - 6 Feb 2012

Own loadable modules

• Modules not part of Linux (not distributed

with the Linux kernel)

• Modules are always ELF-object files (.o)

– (In Linux 2.6 extension: .ko)

Embedded systems laboratory

TUCS /ÅA

IV - 7 Feb 2012

The “HelloWorld” module

// Hello.c

// test kernel module

#include <linux/module.h> //Needed by all modules

#include <linux/kernel.h> //Needed for KERN_ALERT

#include <linux/init.h> //Needed for macros

MODULE_AUTHOR("Jerker Bjorkqvist");

MODULE_LICENSE("GPL");

MODULE_DESCRIPTION("A minimal Linux Kernel module");

static int hello_init(void) {

 printk(KERN_ALERT "Hello, world\n");

 return 0; // =Success

}

static int hello_exit(void) {

 printk(KERN_ALERT "Goodbye, world\n");

}

module_init(hello_init);

module_exit(hello_exit);

Embedded systems laboratory

TUCS /ÅA

IV - 8 Feb 2012

Compiling the module

• Linux 2.4.x

– gcc –c –O2 –W –Wall –isystem

/lib/modules/`uname –r`/build/include

Hello.c

• Linux 2.6.x

– New module build system

• must use makefiles

// Makefile

obj-m: Hello.o

$make -C /path/to/source SUBDIRS=$PWD modules

Embedded systems laboratory

TUCS /ÅA

IV - 9 Feb 2012

Inserting the module

• 2.4.x: $ insmod Hello.o

• 2.6.x: $ insmod Hello.ko

• In general: $ modprobe Hello

• Checking the module insertion (any string

may be written...):

$ dmesg | tail

EXT3 FS on hda3, internal journal

EXT3-fs: mounted filesystem with ordered data mode.

Hello, world

Embedded systems laboratory

TUCS /ÅA

IV - 10 Feb 2012

Command line arguments to module

• Not the normal argc/argv-way

• Macro MODULE_PARM()
 int myint = 3;

 char *mystr;

 MODULE_PARM(myint, “i”);

 MODULE_PARM(mystr, “s”);

• Usage: Example IO-port settings for

module

Embedded systems laboratory

TUCS /ÅA

IV - 11 Feb 2012

Modules vs. Programs

C-Program Module

Program start main() init_module

module_init() MACRO

Program end exit()

return from main()

cleanup_module()

module_exit() MACRO

Libraries Standard libraries (libc) No libraries, only functions

exported by kernel

Environment User space, safe

environment

Kernel space

Memory Process virtual memory

space

Kernel´s code / dataspace

Embedded systems laboratory

TUCS /ÅA

IV - 12 Feb 2012

Modules vs. programs

My application

Operating system

H
a
rd

w
a
re

System libraries

I/O Memory Storage CPU(s)

Drivers S
o
ft

w
a
re

...

Machine language

Micro architecture

User space

All libraries

Kernel space

Exported kernel

symbols
My module

Embedded systems laboratory

TUCS /ÅA

IV - 13 Feb 2012

Name space and kernel code

• Variable names should be meaningful!

• However, if using global variables, variable
names can clash (namespace pollution)

• Kernel code (e.g. module): code will be
linked against complete kernel

– Static variables

– Well-defined prefix for your symbols

– If symbol needed for rest of world
• EXPORT_SYMTAB/EXPORT_SYMBOL() macro

Embedded systems laboratory

TUCS /ÅA

IV - 14 Feb 2012

Memory space

• Kernel has separate memory space from user

process

• Special macros to access user space data from

kernel side

– get/put_user(x, ptr)

– copy_to/from_user(to, from, size)

• Allocating memory

– kmalloc() / kfree() – kernel memory

– vmalloc() / vfree() – virtual memory in kernel space

Embedded systems laboratory

TUCS /ÅA

IV - 15 Feb 2012

Module programming

• A fault in kernel code is fatal to the current
process and sometimes to the whole system

• Modules must support concurrency (calls by
different processes). Distinct data for different
processes

• Driver code must be reentrant: local (stack
allocated) variables / dynamic mem allocation

• The code might be interrupted

• sleep_on(wait_queue) to yield processor

• /proc/ioport lists current ports. /proc/iomem
memory

Embedded systems laboratory

TUCS /ÅA

IV - 16 Feb 2012

Module programming

• No floating point, no MMX

– The FPU context is not saved

• Stack limit

– Kernel stack about 6K in 2.2

• No recursion!!!

• Portable code:

– Minimize CPU specific

– Minimize architecture dependent

Embedded systems laboratory

TUCS /ÅA

IV - 17 Feb 2012

Device driver

• A driver is
– A set of routines that implements the device-specific

aspects of generic I/O operations

• The operation system handles the device
independent I/O aspects
– A transparent API for accessing devices

– If a device is replaced, the application software does
not need to be altered

• Driver in kernel / application?
– Word perfect: Printer device drivers in application

– Windows ->: Printer device drivers in OS

Embedded systems laboratory

TUCS /ÅA

IV - 18 Feb 2012

C or C++ for driver development?

• In general C is a better choice

– Advanced OOP features can cause code

bloat

– C++ compilers can generate many routines

for a single function

– Virtual methods and polymorphism slow

program launch times significantly

• Size really does matter

Embedded systems laboratory

TUCS /ÅA

IV - 19 Feb 2012

Hello World char device

static struct file_operations fops= {
 .read = hello_read,
 .write = hello_write,
 .open = hello_open,
 .release = hello_release
};

static int hello_open(struct inode *inode, struct file *fp) {
 // Create a message for the opener
 sprintf(msg, "Hello PID %i, Greetings from device %i", current->pid, Major\
);
 return 0;
}
static int hello_release(struct inode *inode, struct file *fp) {
 return 0;
}

static ssize_t hello_read(struct file *fp, char *buf, size_t l, loff_t *off)\
 {
 size_t count=0;
 for (; msg[*off+count] != 0 && count<l && *off+count < MESSAGE_LENGTH; cou\
nt++) {
 put_user(msg[*off+count], &buf[count]);
 }
 *off += count;
 return count;
}

static ssize_t hello_write(struct file *fp, const char *buf, size_t l, loff_\
t *off) {
 return 0;
}

Embedded systems laboratory

TUCS /ÅA

IV - 20 Feb 2012

IOCTL

• Given a serial line interface, reading /

writing corresponds to reading / sending

bits on the line

– How to send control to the actual serial line

interface (setting baud-rates, stop-bits etc) ??

• Devices files have a special function ioctl()

to control the device

– ioctl(int fd, int ioctl_nr, long par)

Embedded systems laboratory

TUCS /ÅA

IV - 21 Feb 2012

Drivers and interrupts

• To request an interrupt

– request_irq(int irq, void (*handler), long flags,

char *devname, void *devid)

• handler(int irq, void *devid, struct pt_regs *regs)

– To types of interrupts

• fast (flags = SA_INTERRUPT)

• slow

– Interrupts can be shared (flags = SA_SHIRQ)

Embedded systems laboratory

TUCS /ÅA

IV - 22 Feb 2012

Device drivers in NT

• Virtual Device Drivers (VDD)
– Win32 DLL with specific entry point and installation

requirements

– Alloc 16 bit applications to ”access” certain I/O
addresses

• Win32 Graphics Drivers (GDI)
– implements video controller-specific or printer-specific

aspects of GDI function

• Kernel Mode Drivers (KMD)
– Asynchronous drivers

– Use hardware

Embedded systems laboratory

TUCS /ÅA

IV - 23 Feb 2012

Embedded Operating

Systems

Embedded systems laboratory

TUCS /ÅA

IV - 24 Feb 2012

Embedded operating systems – why?

• 98 % of CPU:s sold in 2001 where used in

embedded systems

• Companies are shifting away from home-

grown operating systems

Embedded systems laboratory

TUCS /ÅA

IV - 25 Feb 2012

The Embedded OS Market 2001

Embedded systems laboratory

TUCS /ÅA

IV - 26 Feb 2012

The Embedded OS Market 2002

Embedded systems laboratory

TUCS /ÅA

IV - 27 Feb 2012

Key factors for selection

Embedded systems laboratory

TUCS /ÅA

IV - 28 Feb 2012

Processors

Embedded systems laboratory

TUCS /ÅA

IV - 29 Feb 2012

Embedded operating systems

• Lite PC
– Set-Top boxes, kiosks, thin clients

– Windows NT/XP embedded, Linux

– Similar to desktop OS

• Small devices
– Cell phones, PDA:s, Broadband routers

– PocketPC, PalmOS, Symbian, DOS, Linux

– Small footprint, some real-time capabilities, no hard drive

• Hardend real-time
– Missilies, satellites, Vehicles, Robots, Industrial Machinery

– VxWorks, QNX, Windows CE, Integrity, Parh Lap, Linux

– Tiny footprint, critical reliability, fully preemptive

Embedded systems laboratory

TUCS /ÅA

IV - 30 Feb 2012

What makes a good Embedded OS?

• Modular

• Scalable

• Configurable

• Small footprint

• CPU support

• Device drivers

• etc, etc, etc...

Embedded systems laboratory

TUCS /ÅA

IV - 31 Feb 2012

What makes a good RTOS?

• Multi-threaded and pre-emptible

• Thread priority has to exist because no

deadline driven OS exists

• Must support predictable thread

synchronization mechanisms

• A system of priority inheritance must

exist

Embedded systems laboratory

TUCS /ÅA

IV - 32 Feb 2012

Embedded operating system

• Task management
– Create, delete, suspend, resume

• Time management
– System clock, delay

• InterTask communcation and synchromization
– Multitasking

• No-OS: Disable / Enable interrupts

• OS: enter/exit critical section

– Wait for event

– Exchange data, queues, shared memory

• Memory management
– Temporary buffers

– Allocate, free (critical in ES)

Embedded systems laboratory

TUCS /ÅA

IV - 33 Feb 2012

Choosing an Embedded OS

• Memory requirements

– Hard drives are rare

– Usually some kind of flash

– May not be flatly addressable

– 512 KB-32 MB typical

– Limited lifespan on write access

– RAM is precious

– Execute in Place (XIP)

Embedded systems laboratory

TUCS /ÅA

IV - 34 Feb 2012

• Real-time requirements

– Interrupt latency

– Interrupts from hardware or software

– Consistency

– Worst-case response

– Driver layers reduce performance

– DOS is the fastest...

Choosing an Embedded OS

Embedded systems laboratory

TUCS /ÅA

IV - 35 Feb 2012

• Fault tolerance

– Memory protection

– Avoid dynamic allocation

– Avoid pointers

– Watchdog timers

– Microkernel

Choosing an Embedded OS

Embedded systems laboratory

TUCS /ÅA

IV - 36 Feb 2012

Embedded system development

• Very many ES programmers have degrees

in some other field

• Not until recently ES software has become

so large that more than one developer is

required

• Traditionally, ES programming is in a

software engineering view behind

Embedded systems laboratory

TUCS /ÅA

IV - 37 Feb 2012

Axis 2120 Network Camera

• uCLinux

• Built-in Ethernet port

• 100 MHz ETRAX CPU

• 16 MB RAM

Embedded systems laboratory

TUCS /ÅA

IV - 38 Feb 2012

Humanoid Robots

• Fujitsu

• RT-Linux

• Height: 48 cm

• Weight: 6 kg

• 100 units/yr

• HOAP

Embedded systems laboratory

TUCS /ÅA

IV - 39 Feb 2012

Real time and Linux

• Linux is not a hard Real-Time operating
system

– Hardware interrupts:
• Worst case latencies cannot be given

– Timers
• Timer jitter too high: > 15 msec

• Soft Real-Time capabilities improved in
Linux 2.6, however, same problems still
remain

Embedded systems laboratory

TUCS /ÅA

IV - 40 Feb 2012

RT Linux performance

• Interrupt latency

– Worst case 15 microseconds

• Period task

– Jitter maximum 35 microseconds

Embedded systems laboratory

TUCS /ÅA

IV - 41 Feb 2012

Realtime requirements recap

• Text editor (no realtime requirements)
– If it takes half a second to update display now and

then, a few users will notice
• Fast and responsive

• Video display (soft realtime)
– Should almost always keep up with frame rate, half a

second freeze is unpleasant
• Must usually meet timing deadlines

• Airbag system (hard realtime)
– Any random latencies in the system is totally

unacceptable
• Must guarantee response times

Embedded systems laboratory

TUCS /ÅA

IV - 42 Feb 2012

Realtime example

• A board sampling analog lines
– 8 bit sample every 100 microseconds (=10 kHz)

– Most boards nowadays have hardware buffers, e.g.
for 512 samples

– -> Must be read every 50 msec
• Any response time over 50 msec will loose data, standard

Linux WILL NOT guarantee this

• The problem with general OS:s
– What you win in average performance, you loose in

worst case performance
• Good example: Paging system

Embedded systems laboratory

TUCS /ÅA

IV - 43 Feb 2012

Solution of small real time systems

• Often endless loops of simple tasks

– longest time before a task will run is the sum of execution time of the
tasks in the loop
counter=500

while (1) {

if (data_on_sensor()) {

 read_sensor();

 compute_output();

 counter--;

}

if (!counter) {

output();

counter=500;

}

}

• Problem: does not scale

– Monitoring hundreds of sensors, displaying grahphical results...

Embedded systems laboratory

TUCS /ÅA

IV - 44 Feb 2012

Adding realtime support to non-realtime OS?

• Realtime support into kernel, locked

memory pages (cannot be swapped out)

– mlock(), sched_setsched()

• Still , worst time jitter is several

milliseconds (18 in milliseconds in one

report)

– Compared to RTLinux, 25 microseconds –

almost 1000 times better

Embedded systems laboratory

TUCS /ÅA

IV - 45 Feb 2012

Problems with Linux

• ”Coarse-grained” synchronization

• Scheduling: fairness gives even most
unimportant nicest task CPU-time

• Reordering of tasks (e.g. disk requests)

• ”Batch” operations, e.g. freeing pages
when swapping

• Missing preemption in system calls

• High priority tasks waits for low priority
tasks to free resources

Embedded systems laboratory

TUCS /ÅA

IV - 46 Feb 2012

RT Linux solution

• The computer runs a hard real-time OS,

Linux runs as a low priority task

• Standard UNIX programming environment

available to realtime problems

RT Linux – Small RT kernel

Linux kernel task RT task 1 RT task 2 RT task 3

Libs

App 1 App n

...

...

Embedded systems laboratory

TUCS /ÅA

IV - 47 Feb 2012

RT Linux technique

• Software emulation of interrupt controller
hardware

– Linux cannot disable interrupts

– Linux can never add latency to the realtime
system interrupt response time

• RT kernel

– never request memory

– never waits for resources

– no synchronization, spin-locks etc...

Embedded systems laboratory

TUCS /ÅA

IV - 48 Feb 2012

RTLinux

• Real time tasks are written as normal

modules

– Linux can handle device initialization, module

loading, unloading etc.

• The RT task only handles the raw, time

critical, interface to hardware, anything

else is handled by the operating system

Embedded systems laboratory

TUCS /ÅA

IV - 49 Feb 2012

RTLinux example

/* Module to toggle output on the parallel port */

RT_TASK my_task;

#define STACK_SIZE 3000

void code_for_rtl_task(unsigned int pin) {

static unsigned char bits = 0;

while (1) {

if (bits) bits = 0; else bits = (1<<pin);

/* Write on the parallel port */

outb(bits, LPT_PORT);

rt_task_wait();

}

}

int init_module(void) {

 RTIME now = rt_get_time();

 /* Init task with code, pin 3, STACK and priority 1 */

 rtl_task_init(&my_task, code_for_rtl_task, 3, STACK_SIZE, 1);

 rtl_task_make_periodic(&mytask, now, 450);

 return 0;

}

