
APPLIED SIGNAL PROCESSING 2013

EXERCISE 3

a) Image compression using PCA
Consider an Nr×Nc array X(m, n) representing an image. For data compression, rep-
resent the image data in the form of a data matrix W(i, j) (see the comments below
for possible ways to define W(i, j)), and compute the singular value decomposition

W = UΣVT =
p∑

i=1

σiuivT
i

Plot the singular values σi. Introduce next a compressed approximation Wr of W
using only the r first dominant principal components,

Wr =
r∑

i=1

σiuivT
i = UrΣrVT

r

where Ur = [u1 · · ·ur], Σr = diag (σ1, . . . , σr) and Vr = [v1 · · ·vr]. Next reconstruct
the compressed image Xr(m,n) corresponding to compressed data matrix Wr(i, j),
and compare with the original.

Determine a suitable value for r which gives a compressed image of reasonable
quality, and calculate the amount of data needed to represent the compressed image.
Compute also the average root-mean-square approximation error

e(W −Wr) =
(∑

i,j

1
NrNc

(
W(i, j)−Wr(i, j)

)2
)1/2

and determine the relative root-mean-square approximation error e(W −Wr)/e(W).

Comments:
The image can be selected freely, or taken as one of the images in Exercise 2b.
The data matrix W can be defined as either
- the image itself, W = X, or
- taking the columns of W as the 64 elements of non-overlapping 8× 8 blocks of X.
The second method usually gives better compression.
The following Matlab commands may be useful: the Matlab command a=A(:) forms
a vector a from the columns of the matrix A. The matrix A can be reconstructed
using the command A=reshape(a,M,N), where M and N are the number of rows and
columns of A.
Note that better compression is obtained by defining the data matrix W in such a
way that it has zero mean value, i.e., by subtracting the mean

Xmean =
1

NrNc

Nr∑
m=1

Nc∑
n=1

X(m,n)

from all elements and adding it back at reconstruction. (The mean value Xmean

is a scalar quantity, whereas the singular value decomposition of a matrix with all
elements equal to Xmean would require two singular vectors.)

b) Blind source signal separation using ICA
(i) The files source1.dat and source2.dat contain 8192 Hz audio signals y1(n) and
y2(n). Construct two mixed signals w1(n) and w2(n) according to

[
w1(n)
w2(n)

]
= A

[
y1(n)
y2(n)

]
n = 0, 1, . . . , N − 1

where A is a randomly selected 2-by-2 matrix. Then use the FastICA algorithm to
unmix the signals w1(n), w2(n) to find independent signal components s1(n), s2(n).
Compare the calculated independent components with the original signals y1(n),
y2(n) by plotting the original signals and the reconstructed signal in the range n =
20000–20100. See Remark regarding the need for scaling and possible sign inversion.
(ii) Repeat the source signal separation in (i) by using the first 10000 data points
only to find the reconstruction matrix B, such that s(n) = Bw(n), and reconstruct
the independent components for the whole sequence using the identified matrix B.
(iii) The files w1.dat and w2.dat contain 11025 Hz audio signals w1(n) and w2(n),
which consist of two mixtures of a sound signal and a heavy noise signal (such as that
from a vacuum cleaner). Use ICA for extracting the sound signal buried in the noise.
Verify that the sound signal has been found by listening to it (note the sampling
frequency!), and by comparing the result with the original signal, which is given in
the file sound50000to50100.dat for the range n = 50000–50100. Note again, that
scaling and possible sign inversion is needed (cf. Remark).

Remarks:
The calculations can be performed using the FastICA program package, which can
be downloaded from the web.
Usage: [IC,A,B] = fastica(W,OPTIONS), where
W: signal matrix with columns w(n),
IC: calculated source signal matrix with columns s(n),
A,B: calculated mixing and reconstruction matrices; w(n) = As(n), s(n) = Bw(n).
Various optional parameters controlling the algorithm can be set with the OPTIONS
input.
Observe that FastICA determines the independent components si(n) in arbitrary
order, the components are normalized to have unit variance (whereas there is no
such assumption on the original signals yi(n)), and they are arbitrary with respect to
sign (−si(n) and si(n) are equally valid independent components). For comparison,
yi(n) and si(n) should therefore be scaled to have equal variances, and possible sign
differences should observed.

