
Applied Signal Processing 2013

Exercise 2

a) Signal filtering and compression with wavelets.
(i) The file www.abo.fi/~htoivone/aspdata/nmr.dat contains a noisy data sequence rep-
resenting a nuclear magnetic resonance (nmr) spectrum.

Calculate wavelet transforms of the sequence using both the Haar discrete wavelet trans-
form and Daubechies wavelets. Use hard and soft thresholds to remove noise and to compress
the transformed signal. Determine the achieved compression when using the threshold value
d = 3. Calculate the inverse Haar wavelet transform of the compressed signal. Plot the
original signal and the signal which has been reconstructed from the compressed transform
and evaluate the approximation accuracy of the compressed signal.

(ii) The signal in (i) contains peaks which make compression using Fourier or cosine trans-
form inefficient, since a large number of frequency components are needed to represent the
peaks correctly. Determine how well the signal can be approximated using its dominant
Fourier transform components if the same compression as in (i) is required.

(iii) Use the Matlab command ’load handel’ to load the audio signal y and the associated
sampling frequency Fs. Use the first 216 samples and compute wavelet transforms with various
resolution levels J ≤ 16 and thresholds to achieve compression (suitable threshold values are
in the range d = 0.02 · · · 0.07). Reconstruct the signal from the compressed transforms and
plot the samples for n = 2001 · · · 2100 of both the original signal and the signals which have
been reconstructed from the compressed transforms. Play the signals to determine whether
the compressed signal can be considered acceptable.

b) Image processing using wavelets.
Apply 2-dimensional wavelet transforms with thresholds for image filtering and compres-
sion. Use both Haar and Daubechies wavelets, and find thresholds which achieve a suitable
compromise between compression level and image quality. The following test cases can be
used.

- Apply wavelet filtering to enhance quality of the image supermies.jpg, which is taken
with a crappy digital camera, and is somewhat noisy.

- Apply wavelet filtering to compress the image lenna.jpg.



Matlab programs

xdaub = dwtdaub(x, J, Hord)
Computes Daubechies wavelet transform with J stages and filter order 2*Hord-1.
x = idwtdaub(xdaub, J, Hord)
Computes inverse Daubechies wavelet transform.
xdaub2 = dwtdaub2(x2, J, Hord)
Computes 2-dimensional Daubechies wavelet transform.
x2 = idwtdaub2(xdaub2, J, Hord)
Computes inverse 2-dimensional Daubechies wavelet transform.
[xL, xH] = daubstp(x, H)
Computes one stage of Daubechies wavelet transform.
xr = idaubstp(xL, xH, H)
Computes one stage of inverse Daubechies wavelet transform.
[xf, nround] = hardthreshold(x, epsilon)
Applies hard threshold epsilon to signal x.
[xf, nround] = softthreshold(x, epsilon)
Applies soft threshold epsilon to signal x.
[xf, nround] = softthreshold2(x, epsilon)
Applies soft threshold to signal x with threshold components in vector epsilon applied to different
subbands.
a = hdaub(m)
Generates the 2*m Daubechies wavelet filter coefficients corresponding to m= 1, 2, . . ..

Auxiliary programs

xp = expandperiodic(x, M, dir)
Periodic expansion of signal x.
data = imgtodouble(imgname)
Creates a floating point representation of an image.
datauint = doubletoimg(data)
Transforms a floating point image to uint8 representation of image

Data files

nmr.dat Nuclear magnetic resonance data sequence.
supermies.jpg, lenna.jpg Images.

Matlab Tips
Image data is loaded and viewed in 8-bit unsigned integer format, whereas filtering should be done in double precision floating point
format. You can use the functions x = imgtodouble(’filename’) to load an image in floating point format and img = doubletoimg(x) to
transform a double precision array to 8-bit unsigned integer array.

Images can be viewed with the command image(img). However, you have to specify window size in order to view the image using
correct aspect ratio. The following code creates an 8-bit unsigned integer array, displays the image and sets the image size and position
on desktop:

% Display figure

img = doubletoimg(x); % create 8-bit unsigned integer array

image(img); % display figure

% Set figure window size

[n,m] = size(x);

left = 200; % window left side position on desktop

bottom = 200; % window bottom position on desktop

set(gcf, ’position’, [left, bottom, 2*m, 2*n]);


